PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Experimental investigation and modelling of hot forming B₄C/AA6061 low volume fraction reinforcement composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an experimental investigation of the hot deformation behaviour of 15% B₄C particle reinforced AA6061 matrix composites and the establishment of a novel corresponding unified and physically-based visco-plastic material model. The feasibility of hot forming of a metal matrix composite (MMC) with a low volume fraction reinforcement has been assessed by performing hot compression tests at different temperatures and strain rates. Examination of the obtained stress-strain relationships revealed the correlation between temperature and strain hardening extent. Forming at elevated temperatures enables obvious strain rate hardening and reasonably high ductility of the MMC. The developed unified material model includes evolution of dislocations resulting from plastic deformation, recovery and punching effect due to differential thermal expansion between matrix and reinforcement particles during non-steady state heating and plastic straining. Good agreement has been obtained between experimental and computed results. The proposed material model contributes greatly to a more thorough understanding of flow stress behaviour and microstructural evolution during the hot forming of MMCs.
Rocznik
Strony
457--469
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Imperial College London, Department of Mechanical Engineering, United Kingdom
autor
  • Imperial College London, Department of Mechanical Engineering, United Kingdom
autor
  • Harbin Institute of Technology, School of Material Science and Engineering, Harbin, China
autor
  • Marbeau Design Consultancy, Paris, France
autor
  • Trevor A. Dean University of Birmingham, Department of Mechanical Engineering, Birmingham, United Kingdom
Bibliografia
  • 1. Aour B., Mitsak A., 2016, Analysis of plastic deformation of semi-crystalline polymers during ECAE process using 135◦ die, Journal of Theoretical and Applied Mechanics, 54, 1, 263-275, DOI:10.15632/jtam-pl.54.1.263
  • 2. Arsenault R.J., Shi N., 1986, Dislocation generation due to differences between the coeffi- cients of thermal expansion, Materials Science and Engineering, 81, 175-187. DOI: 10.1016/0025- -5416(86)90261-2
  • 3. Bai Q., Lin J., Dean T.A., Balint D.S., Gao T., Zhang Z., 2013, Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions, Materials Science and Engineering A, 559, 352-358 DOI: 10.1016/j.msea.2012.08.110
  • 4. Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials, Journal of the Mechanics and Physics of Solids, 13, 4, 223-227, DOI: 10.1016/0022-5096(65)90011-6
  • 5. Cao J., Lin J., 2008, A study on formulation of objective functions for determining material model, International Journal of Mechanical Sciences, 50, 2, 193-204, DOI: 10.1016/j.ijmecsci.2007.07.003
  • 6. Chawla K.K., Chawla N., 2004, Metal-matrix composites, Material Science and Technology, 1, 1-25, DOI: 10.1016/B978-0-08-050073-7.50011-7
  • 7. Chen H.S., Wang W.X., Li Y. Li, Zhang P., Nie H.H., Wu Q.C., 2015, The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites, Journal of Alloys and Compounds, 632, 23-29, DOI: 10.1016/j.jallcom.2015.01.048
  • 8. Ganesan G., Raghukandan K., Karthikeyan R., Pai B.C., 2004, Development of processing maps for 6061 Al/15% SiCp composite material, Materials Science and Engineering A, 369, 1-2, 230-235, DOI: 10.1016/j.msea.2003.11.019
  • 9. Guo H., Zhang Z., 2017, Processing and strengthening mechanisms of boron-carbide-reinforced aluminum matrix composites, Metal Powder Report, DOI: 10.1016/j.mprp.2017.06.072
  • 10. Hashin Z., Shtrikman S., 1963, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, 11, 2, 127-140, DOI: 10.1016/0022-5096(63)90060-7
  • 11. Ibrahim I.A., Mohamed F.A., Lavernia E.J., 1991, Particulate reinforced metal matrix composites – a review, Journal of Materials Science, 26, 5, 1137-1156, DOI: 10.1007/BF00544448
  • 12. Kaczmar J.W., Pietrzak K., Wlosinski W., 2000, The production and application of metal matrix composite materials, Journal of Materials Processing Technology, 106, 1-3, 58-67, DOI: 10.1016/S0924-0136(00)00639-7
  • 13. Khan A.S., Suh Y.S., Kazmi R., 2004, Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys, International Journal of Plasticity, 20, 12, 2233-2248, DOI: 10.1016/j.ijplas.2003.06.005
  • 14. Khosoussi S., Mondali M., Abedian A., 2014, An analytical study on the elastic-plastic behavior of metal matrix composites under tensile loading, Journal of Theoretical and Applied Mechanics, 52, 2, 323-334
  • 15. Kroner E., 1958, Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Zeitschrift f¨ur Physik, 151, 4, 504-518, DOI: 10.1007/BF01337948
  • 16. Li B., Lin J., Yao X., 2002, A novel evolutionary algorithm for determining unified creep damage constitutive equations, International Journal of Mechanical Sciences, 44, 5, 987-1002, DOI: https://doi.org/10.1016/S0020-7403(02)00021-8
  • 17. Lin J., Dean T.A., 2005, Modelling of microstructure evolution in hot forming using unified constitutive equations, Journal of Materials Processing Technology, 167, 2-3, 354-362, DOI: 10.1016/j.jmatprotec.2005.06.026
  • 18. Lin J., Liu Y., Farrugia D.C.J., Zhou M., 2005, Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling, Philosophical Magazine, 85, 18, 1967-1987, DOI: 10.1080/14786430412331305285
  • 19. Mohamed M.S., Foster A.D., Lin J., Balint D.S., Dean T.A., 2012, Investigation of deformation and failure features in hot stamping of AA6082: Experimentation and modelling, International Journal of Machine Tools and Manufacture, 53, 1, 27-38, DOI: 10.1016/j.ijmachtools.2011.07.005
  • 20. Mura T., 1987, Micromechanics of Defects in Solids, Springer, ISBN 978-94-009-3489-4
  • 21. Nardone V.C., Prewo K.M., 1986, On the strength of discontinuous silicon carbide reinforced aluminum composites, Scripta Metallurgica, 20, 1, 43-48, DOI: 10.1016/0036-9748(86)90210-3
  • 22. Suh Y.S., Joshi S.P., Ramesh K.T., 2009, An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites, Acta Materialia, 57, 19, 5848-5861, DOI: 10.1016/j.actamat.2009.08.010
  • 23. Wang K.K., Li X.P., Li Q.L., Shu G.G., Tang G.Y., 2017, Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B4C composite during compression at elevated temperature, Materials Science and Engineering A, 696, 1, 248-256, DOI: 10.1016/j.msea.2017.03.013
  • 24. Wu C.D., Ma K.K., Wu J.L., Fang P., Luo G.Q., Chen F., Shen Q., Zhang L.M., Schoenung J.M., Lavernia E.J., 2016, Influence of particle size and spatial distribution of B4C reinforcement on the microstructure and mechanical behavior of precipitation strengthened Al alloy matrix composites, Materials Science and Engineering A, 675, 421-430, DOI: 10.1016/j.msea.2016.08.062
  • 25. Ye H.Z., Liu X.Y., 2004, Review of recent studies in magnesium matrix composites, Journal of Materials Science, 39, 20, 6153-6171, DOI: 10.1023/B:JMSC.0000043583.47148.31
  • 26. Zhou Z.S., Wu G.H., Jiang L.T., Li R.F., Xu Z.G., 2014, Analysis of morphology and microstructure of B4C/2024Al composites after 7.62 mm ballistic impact, Materials and Design, 63, 658-663, DOI: 10.1016/j.matdes.2014.06.042
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-031c1f97-3d1e-4dd5-8695-bd426d4a2071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.