PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear-optical refraction of silver nanoparticle composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the experimental data on nonlinear refraction of silver nanoparticle composites using a standard Z-scan technique are presented. It was found that the colloids of silver nanoparticles of various size possess a defocusing ability. Based on general considerations, one can conclude thermal lens nature of the nonlinear refraction of the colloids. Significantly different magnitudes of the nonlinear refractive index of silver nanoparticles suspended in water and in glycerol can be explained by differences in the specific heat capacity of mentioned fluids. The effective thickness for nonlinear-optical interaction of light with a two-dimensional silver nanoparticle array was estimated.
Słowa kluczowe
Czasopismo
Rocznik
Strony
389--398
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., tab.
Twórcy
autor
  • Ivan Franko National University of Lviv, Department of Physics, Kyrylo and Methodii St. 8, Lviv 79005, Ukraine
autor
  • Ivan Franko National University of Lviv, Department of Physics, Kyrylo and Methodii St. 8, Lviv 79005, Ukraine
autor
  • V.E. Lashkaryov Institute of Semiconductors Physics NAS of Ukraine, Nauky Avenue 41, 03028, Kyiv, Ukraine
Bibliografia
  • [1] KELLY K.L., CORONADO E., LIN LIN ZHAO, SCHATZ G.C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, Journal of Physical Chemistry B 107(3), 2003, pp. 668–677.
  • [2] KREIBIG U., VOLLMER M., Optical Properties of Metal Clusters, Springer-Verlag, Heidelberg, 1995, p. 18.
  • [3] DOERING W.E., NIE S.M., Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement, Journal of Physical Chemistry B 106(2), 2002, pp. 311–317.
  • [4] JENSEN T.R, VAN DUYNE R.P., JOHNSON S.A., MARONI V.A., Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons, Applied Spectroscopy 54(3), 2000, pp. 371–377.
  • [5] ATWATER H.A., POLMAN A., Plasmonics for improved photovoltaic devices, Nature Materials 9(3), 2010, pp. 205–213.
  • [6] RAY P.C., Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing, Chemical Reviews 110(9), 2010, pp. 5332–5365.
  • [7] FALCÃO-FILHO E.L., DE ARAÚJO C.B., RODRIGUES JR. J.J., High-order nonlinearities of aqueous colloids containing silver nanoparticles, Journal of the Optical Society of America B 24(12), 2007, pp. 2948–2956.
  • [8] BHUSHAN B., KUNDU T., SINGH B.P., Two-photon absorption spectrum of silver nanoparticles, Optics Communications 285(24), 2012, pp. 5420–5424.
  • [9] NADJARI H., ABASI AZAD Z., Determining the nonlinear coefficient of gold and silver nano-colloids using SPM and CW Z-scan, Optics and Laser Technology 44(5), 2012, pp. 1629–1632.
  • [10] KARPOV S.V., POPOV A.K., SLABKO V.V., Photochromic reactions in silver nanocomposites with a fractal structure and their comparative characteristics, Technical Physics 48(6), 2003, pp. 749–756.
  • [11] MIKHEEVA P., SIDOROV A.I., CO2 laser radiation confinement in a composite material containing silver nanoparticles, Technical Physics Letters 27(9), 2001, pp. 779–780.
  • [12] GUANG YANG, WEITIAN WANG, YUELIANG ZHOU, HUIBIN LU, GUOZHEN YANG, ZHENGHAO CHEN, Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films, Applied Physics Letters 81(21), 2002, pp. 3969–3971.
  • [13] SCALISI A.A., COMPAGNINI G., D’URSO L., PUGLISI O., Nonlinear optical activity in Ag–SiO2 nanocomposite thin films with different silver concentration, Applied Surface Science 226(1–3), 2004, pp. 237–241.
  • [14] SHEIK-BAHAE M., SAID A.A., VAN STRYLAND E.W., High-sensitivity, single-beam n2 measurements, Optics Letters 14(17), 1989, pp. 955–957.
  • [15] TINGJIAN JIA, TINGCHAO HE, PENGWEI LI, YUJUN MO, YUTING CUI, A study of the thermal-induced nonlinearity of Au and Ag colloids prepared by the chemical reaction method, Optics and Laser Technology 40(7), 2008, pp. 936–940.
  • [16] MEHENDALE S.C., MISHRA S.R., BINDRA K.S., LAGHATE M., DHAMI T.S., RUSTAGI K.C., Nonlinear refraction in aqueous colloidal gold, Optics Communications 133(1–6), 1997, pp. 273–276.
  • [17] GANEEV R.A., RYASNYANSKII A.I., KAMALOV SH.R., KODIROV M.K., USMANOV T., Nonlinear optical parameters of colloidal silver at various stages of aggregation, Technical Physics 72(7), 2002, pp. 889–893.
  • [18] MOHAN S., LANGE J., GRAENER H., SEIFERT G., Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass, Optics Express 20(27), 2012, pp. 28655–28663.
  • [19] HONG SHEN, BOLIN CHENG, GUOWEI LU, TINGYIN NING, DONGYI GUAN, YUELIANG ZHOU, ZHENGHAO CHEN, Enhancement of optical nonlinearity in periodic gold nanoparticle arrays, Nanotechnology 17(16), 2006, pp. 4274–4277.
  • [20] OKADA N., HAMANAKA Y., NAKAMURA A., PASTORIZA-SANTOS I., LIZ-MARZÁN L.M., Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances, Journal of Physical Chemistry B 108(26), 2004, pp. 8751–8755.
  • [21] EVANOFF JR. D.D., CHUMANOV G., Size-controlled synthesis of nanoparticles. 1. “Silver-only” aqueous suspensions via hydrogen reduction, Journal of Physical Chemistry B 108(37), 2004, pp. 13948–13956.
  • [22] MALYNYCH S., LUZINOV I., CHUMANOV G., Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles, Journal of Physical Chemistry B 106(6), 2002, pp.1280–1285.
  • [23] MALYNYCH S., CHUMANOV G., Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays, Journal of the American Chemical Society 125(10), 2003, pp. 2896–2898.
  • [24] CHAPPIE P.B., STAROMLYNSKA J., MCDUFF R.G., Z-scan studies in the thin- and the thick-sample limits, Journal of the Optical Society of America B 11(6), 1994, pp. 975–982.
  • [25] GANEEV R.A., BABA M., RYASNYANSKY A.I., SUZUKI M., KURODA H., Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids, Optics Communications 240(4–6), 2004, pp. 437–448.
  • [26] XIA T., HAGAN D.J., SHEIK-BAHAE M., VAN STRYLAND E.W., Eclipsing Z-scan measurement of λ /104 wave-front distortion, Optics Letters 19(5), 1994, pp. 317–319.
  • [27] KWANG TAEK KIM, IN SOO KIM, CHERL-HEE LEE, JONGHUN LEE, A temperature-insensitive cladding- -etched fiber Bragg grating using a liquid mixture with a negative thermo-optic coefficient, Sensors 12(6), 2012, pp. 7886–7892.
  • [28] CIDDOR P.E., Refractive index of air: new equations for the visible and near infrared, Applied Optics 35(9), 1996, pp. 1566–1573.
  • [29] PINCHUK A.O., SCHATZ G.C., Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles, Materials Science and Engineering B 149(3), 2008, pp. 251–258.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-031abee7-f8b2-45df-a6c0-afd342d821ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.