PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Secure Data Aggregation Mechanism based on Constrained Supervision for Wireless Sensor Network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The data aggregation process of wireless sensor networks faces serious security problems. In order to defend the internal attacks launched by captured nodes and ensure the reliability of data aggregation, a secure data aggregation mechanism based on constrained supervision is proposed for wireless sensor network, which uses the advanced LEACH clustering method to select cluster heads. Then the cluster heads supervise the behaviors of cluster members and evaluate the trust values of nodes according to the communication behavior, data quality and residual energy. Then the node with the highest trust value is selected as the supervisor node to audit the cluster head and reject nodes with low trust values. Results show that the proposed mechanism can effectively identify the unreliable nodes, guarantee the system security and prolong the network life time.
Twórcy
autor
  • State Grid Key Laboratory of Power Industrial Chip Design and Analysis Technology, Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing, China
autor
  • State Grid Key Laboratory of Power Industrial Chip Design and Analysis Technology, Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing, China
autor
  • State Grid Key Laboratory of Power Industrial Chip Design and Analysis Technology, Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing, China
autor
  • Chongqing University of Posts and Telecommunications, Chongqing, China
autor
  • State Grid Key Laboratory of Power Industrial Chip Design and Analysis Technology, Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing, China
autor
  • Maintenance Company of State Grid NingXia Electric Power Co.,Ltd, Yinchuan, China
Bibliografia
  • [1] D. P. Wu, J. He, H. G. Wang, C. G. Wang and R. Y.Wang, ”A hierarchical packet forwarding mechanism for energy harvesting wireless sensor networks”, IEEE Communication Magazine, 53 (8), 92–98 (2015).
  • [2] H. Barani, Y. Jaradat, H. Huang, Z. C. Li and S. Misra, ”Effect of sink location and redundancy on multi-sink wireless sensor networks: a capacity and delay analysis”, IET Communications, 12 (8), 941–947 (2018).
  • [3] P. N. Zhang and J. Ma, ”Channel Characteristic Aware Privacy Protection Mechanism in WBAN”, Sensors, 18 (8), accepted, (2018). DOI: 10.3233/JCS-2007-15104.
  • [4] D. Upadhyay, A. Dubey and P. Thilagam, ”Application of non-linear gaussian regression-based adaptive clock synchronization technique for wireless sensor network in agriculture”, IET Communications, 18 (10), 4328–4335 (2018).
  • [5] D. P. Wu, B. R. Yang, H. G. Wang, C. Y. Wang and R. Y. Wang, ”Privacy-preserving multimedia big data aggregation in large-scale wireless sensor networks”, ACM Trans. Multimedia Computing, 12 (4), 1–19 (2016).
  • [6] S. Boubiche, D. Boubiche, A. Bilami and H. Toral-Cruz, ”Big data challenges and data aggregation strategies in wireless sensor networks”, IEEE Access, 6 (C), 20558–20571 (2018).
  • [7] Al-Tabbakh, S. M, ”Novel technique for data aggregation in wireless sensor networks”, 2017 International Conference on Internet of Things, October 2017, Gafsa, Tunisia, 2017, pp. 1–8.
  • [8] P. N. Zhang, X. Y. Kang, Y. Z. Liu, and H. P. Yang, ”Cooperative Willingness aware Collaborative Caching Mechanism towards Cellular D2D Communication”, IEEE ACCESS, accepted, (2018). DOI: 10.1109/ACCESS.2018.2873662.
  • [9] P. N. Zhang, X. Y. Kang, D. P. Wu, and R. Y. Wang, ”High-accuracy entity state prediction method based on deep belief network towards IoT search”, IEEE Wireless Communications Letters, accepted, (2018). DOI: 10.1109/LWC.2018.2877639.
  • [10] H. Chan, A. Perrig, B. Przydatek and D. Song, ”SIA: Secure information aggregation in sensor networks”, Journal of Computer Security, 15 (1), 1–19 (2007).
  • [11] D. Westhoff, J. Girao and M. Acharya, ”Concealed data aggregation for reverse multicast traffic in sensor networks: encryption, key distribution, and routing adaptation”, IEEE Transactions on Mobile Computing, 5 (10), 1417–1431 (2006).
  • [12] X. Dong and S. Li, ”A secure data aggregation approach based on monitoring in wireless sensor networks”, China Communication, 9 (6), 14–17 (2012).
  • [13] H. Wang, Y. Li, M. R. Mi and P. Wang, ”Secure data fusion method based on supervisory mechanism for Industrial Internet of Things”, Chinese Jounal of Scientific Instrument, 34 (4), 817–824 (2013).
  • [14] K. Yong, Y. Xin, ”Study on trust management-based cluster-head selection in wireless sensor networks”, 2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS), August 2015, Harbin, China, 2015, pp. 1–8.
  • [15] N. Labraoui, ”A reliable trust management scheme in wireless sensor networks”, 2015 12th International Symposium on Programming and Systems (ISPS), April 2015, Algiers, Algeria, 2015, pp. 1–6.
  • [16] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, ”Energyefficient communication protocol for wireless microsensor networks”, 33rd Annual Hawaii International Conference on System Sciences, January 2000, Maui, USA, 2000, pp. 223.
  • [17] D. P. Wu, H. P. Zhang, H. G. Wang, C. G. Wang, R. Y. Wang and Y. Xie, ”Quality of Protection (QoP)-driven data forwarding for intermittently connected wireless networks”, IEEE Wireless Communication, 22 (4), 66–73 (2015).
  • [18] D. P. Wu, S. S. Si, S. E. Wu, and R. Y. Wang, ”Dynamic trust relationships aware data privacy protection in Mobile Crowd-Sensing”, IEEE Internet of Things Journal, 5 (4), 2958–2970 (2018).
  • [19] D. Li, Y. Du, ”Uncertain artificial intelligence”, Beijiing: National Defense Industry Press, 2005, pp. 137–185.
  • [20] L. Qin, K. Q. Sun and S. G. LI, ”Maximum fuzzy entropy image segmentation based on artificial fish school algorithm”, International Conference on Intelligent Human-Machine Systems and Cybernetics, December 2016, Hangzhou, China, 2016, pp. 164–168.
  • [21] W. Luo, Y. Wu, J. Yuan, W. Lu, ”The calculation method with Grubbs test for real-time saturation flow tate at signalized intersection”, The Second International Conference on Intelligent Transportation, Singapore, 2017, pp. 129–136.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
2. This work was supported by the grant No. 546816180001 financed from State Grid Corporation Headquarters Science and Technology Project.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-031a4602-7043-4a2b-acf6-f1f4cc07739c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.