Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The electronic and optical properties of Mn–S co-doped anatase TiO2 were calculated using the plane-wave-based ultrasoft pseudopotential density functional method within its generalized gradient approximation (GGA). The calculated results show that the band gap of Mn–S co-doped TiO2 is larger than that of the pure TiO2, and two impurity bands appear in the forbidden band, one of which above the valence band plays a vital role for the improvement of the visible light catalytic activity. The Mn–S co-doped anatase TiO2 could be a potential candidate for a photo catalyst because of its enhanced absorption ability of visible light.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
38--44
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Research Center for Computational Materials & Device Simulations, Hebei University, Baoding 071002, P.R. China
- College of Electronic & Information Engineering, Hebei University, Baoding 071002, P.R. China
autor
- Research Center for Computational Materials & Device Simulations, Hebei University, Baoding 071002, P.R. China
- College of Electronic & Information Engineering, Hebei University, Baoding 071002, P.R. China
- Department of Analytical Chemistry, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba 14071, Spain
autor
- College of Electronic & Information Engineering, Hebei University, Baoding 071002, P.R. China
Bibliografia
- 1. Wei B.L., Chen Y.P., Ye M.J., Shao Z.H., He Y., Shi Y., Plasma Chem. Plasma P., 35 (2015), 173.
- 2. Angthararuk D., Sutthivaiyakit P., Blaise C., Gagné F., Sutthivaiyakit S., Environ. Sci. Pollut. R., 22 (2015), 1468.
- 3. Papoulis D., Kordouli E., Lampropoulou P., Rapsomanikis A., Kordulis C., Panagiotaras D., Theophylaktou K., Stathatos E., Komarneni S., J. Surf. Interfac. Mater., 2 (2014), 261.
- 4. Zhan L.L., Chen H.F., Ye J.Q., Adv. Mater. Res., 531 (2012), 387.
- 5. Huang J.M., Liu Y.Y., Lu L.F., Lu L., Res. Chem. Intermediat., 38 (2012), 487.
- 6. Varley J.B., Janotti A., Walle C.G.V.D., Adv. Mater., 23 (2011), 2343.
- 7. Zuo F., Bozhilov K., Dillon R. J., Wang L., Smith P., Zhao X., Bardeen C., Feng P.Y., Angew. Chem. Int. Edit., 124 (2012), 6327.
- 8. Yamada N., Hitosugi T., Kasai J., Hirose Y., Shimada T., Hasegawa T., J. Appl. Phys., 105 (2009), 123702.
- 9. Pal U., Ghosh S., Chatterjee D., Transit. Metal. Chem., 37 (2012), 93.
- 10. Yang X. X., Cao C. D., Hohn K., Erickson L., Maghirang R., Hamal D., Klabunde K., J. Catal., 252 (2007), 296.
- 11. Ceotto M., Presti L.L., Cappelletti G., Meroni D., Spadavecchia F., Zecca R., Leoni M., Scardi P., Bianchi C.L., Ardizzone S., J. Phys. Chem. C, 116 (2012), 1764.
- 12. Yang K., Dai Y., Huang B.B., Whangbo M.H., J. Phys. Chem. C, 113 (2009), 2624.
- 13. Umebayashi T., Yamaki T., Itoh H., Asai K., Appl. Phys. Lett., 81 (2002), 454.
- 14. Wu B., Zhuang W.Q., Sahu M., Biswas P., Tang Y.J., Sci. Total Environ., 409 (2011), 4635.
- 15. Chen D.M., Xu G., Miao L., Chen L.H., Nakao S., Jin P., J. Appl. Phys., 107 (2010), 063707.
- 16. Feng H.J., Zhang M. H., Yu L.E., Appl. Catal. A-Gen., 413 - 414 (2012), 238.
- 17. Li M., Zhang J.Y., Zhang Y., Chem. Phys. Lett., 527 (2012), 63.
- 18. Umebayashi T., Yamaki T., Tanaka S., Asai K., Chem. Lett., 32 (1) (2003), 330.
- 19. Cui Y., Du H., Wen L.S., Solid State Commun., 149 (2009), 634.
- 20. Zhang K.J., Xu W., Li X.J., Zheng S.J., Xu G., Cent. Eur. J Chem., 4 (2006), 234.
- 21. Binas V.D., Sambani K., Maggos T., Katsanaki A., Kiriakidis G., Appl. Catal. B-Environ., 113 - 114 (2012), 79.
- 22. Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.I., Refson K., Payne M.C., Z. Kristallogr., 220 (2005), 567.
- 23. Burdett J.K., Hughbandk T., Miller G.J., Richardson Jr J.W., Smith J.V., J. Am. Chem. Soc., 109 (1987), 3639.
- 24. Liu X.S., Jiang E.Y., Li Z.Q., Song Q.G., Appl. Phys. Lett., 92 (2008), 252104.
- 25. Valentin C.D., Pacchioni G., Selloni A., Chem. Mater., 17 (2005), 6656.
- 26. Umebayashi T., Yamaki T., Itoh H., Asai K., J. Phys. Chem. Solids, 63 (2002), 1909.
- 27. Zhang X.J., Liu Q.J., Deng S.G., Chen J., Gao P., Acta Phys. Sin.-Ch. Ed., 60 (2011), 087103.
- 28. Zhong X.C., Pan Z.G., Wei Z.G., Xu G., Xu Y.Y., Comput. Appl. Chem., 28 (2011), 685.
- 29. Matsushima S., Takehara K., Yamane H., Yamada K., Nakamura H., Arai M., Kobayashi K., J. Phys. Chem. Solids, 68 (2007), 206
- 30. Wu G.H., Zheng S.K., Jia C.J., Liu L., Acta Phys. Sin.-Ch. Ed., 61 (2012), 223101.
- 31. Zheng S. K., Wu G. H., Liu L., Acta Phys. Sin.-Ch. Ed., 62 (2013), 043102.
- 32. Tang H., Berger H., Schmid P.E., Lé Vy F., Burri G., Solid State Commun., 23 (1977), 161.
- 33. Stampfl C., Van De Walle C.G., Phys. Rev. B, 59 (1999), 5521.
- 34. Perdew J.P., Mel L., Phys. Rev. Lett., 51 (1983), 1884.
- 35. Lee J.Y., Park J., Cho J.H., Appl. Phys. Lett., 87 (2005), 011904.
- 36. Long R., English J.N., Appl. Phys. Lett., 98 (2011), 142103.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0317d90b-bd2b-42bc-bcc0-98fc14565b4f