PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulations of concrete response to impact loading using two regularized models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on a comparison of two regularized continuum models for concrete in the simulations of selected benchmarks of response to impact loading. Their overview is performed in the context of application in dynamics. The first one is the Hoffman viscoplastic consistency model, where the strain rate activates regularization. The second model is derived from the scalar damage theory enhanced by an averaging equation incorporating the Laplacian of an averaged strain measure. Both models are implemented in the FEAP package. The results of some standard wave propagation tests are discussed, considering discretization sensitivity and predicted failure modes. Three examples are pre- sented: the direct tension of a plain and reinforced concrete bar, the split test of a cylinder, and the four-point bending of a reinforced concrete beam. The ability of both models to simulate impact loading is assessed.
Rocznik
Strony
27--60
Opis fizyczny
Bibliogr. 72 poz., rys., wykr.
Twórcy
autor
  • Cracow University of TechnologyFaculty of Civil EngineeringWarszawska 24, 31-155 Cracow, Poland
  • Cracow University of TechnologyFaculty of Civil EngineeringWarszawska 24, 31-155 Cracow, Poland
autor
  • Cracow University of TechnologyFaculty of Civil EngineeringWarszawska 24, 31-155 Cracow, Poland
Bibliografia
  • 1. R. Alessi, J.-J. Marigo, S. Vidoli, Gradient damage models coupled with plasticity: Variational formulation and main properties, Mechanics of Materials , 80 : 351–367, 2015.
  • 2. H. Askes, J. Pamin, R. de Borst, Dispersion analysis and element-free Galerkin solutions of second- and fourth-order gradient-enhanced damage models, International Journal for Numerical Methods in Engineering , 49 : 811–832, 2000.
  • 3. Z.P. Bažant, T. Belytschko, Wave propagation in a strain-softening bar: exact solution, ASCE Journal of Engineering Mechanics , 111 (3): 381–389, 1985.
  • 4. Z.P. Bažant, M. Jirásek, Nonlocal integral formulations and damage: Survey of progress, ASCE Journal of Engineering Mechanics , 128 (11): 1119–1149, 2002.
  • 5. Z.P. Bažant, G. Pijaudier-Cabot, Nonlocal continuum damage, localization instability and convergence, ASME Journal of Applied Mechanics , 55 : 287–293, 1988.
  • 6. T. Belytschko, D. Lasry, A study of localization limiters for strain-softening in statics and dynamics, Computers & Structures , 33 (3): 707–715, 1989.
  • 7. N. Bićanić, C.J. Pearce, D.R.J. Owen, Failure predictions of concrete like materials using softening Hoffman plasticity model, [in:] H. Mang, N. Bićanić, R. de Borst [Eds], Computational modelling of concrete structures, Euro-C 1994 , vol. 1, pp. 185–198, Pineridge Press, Swansea, UK, 1994.
  • 8. J. Bobiński, J. Tejchman, Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity, Computers & Concrete , 1 (4): 1–22, 2004.
  • 9. F.L.L.B. Carneiro, A. Barcellos, Tensile strength of concretes, RILEM Bulletin , 13 : 97–123, 1953.
  • 10. A. Carosio, K. Willam, G. Etse, On the consistency of viscoplastic formulations, International Journal of Solids and Structures , 37 (48): 7349–7369, 2000.
  • 11. K. Cichocki, Numerical analysis of concrete structures under blast load , Monograph 145, Koszalin University of Technology, Koszalin, 2008.
  • 12. K. Cichocki, R. Adamczyk, M. Ruchwa, Material modelling for structures subjected to impulsive loading, Computer Assisted Mechanics and Engineering Sciences , 6 (2): 231–244, 1999.
  • 13. C. Comi, Computational modelling of gradient-enhanced damage in quasi-brittle materials, Mechanics of Cohesive-frictional Materials , 4 (1): 17–36, 1999.
  • 14. R. de Borst, J. Pamin, M.G.D. Geers, On coupled gradient-dependent plasticity and damage theories with a view to localization analysis, European Journal of Mechanics A/Solids , 18 (6): 939–962, 1999.
  • 15. J.H.P. de Vree, W.A.M. Brekelmans, M.A.J. van Gils, Comparison of nonlocal approaches in continuum damage mechanics, Computers & Structures , 55 (4): 581–588, 1995.
  • 16. J.-F. Dubé, G. Pijaudier-Cabot, Ch. La Borderie, Rate dependent damage model for concrete in dynamics, Journal of Engineering Mechanics , 122 (10): 939–947, 1996.
  • 17. G. Duvaut, I.J. Lions, Les Inequations en Mechanique et en Physique , Dunod, Paris, France, 1972.
  • 18. J. Eibl, P.H. Bischoff, G. Lohrmann, Failure mechanics of fibre-reinforced concrete and pre-damaged structures: dynamic loading conditions, Technical Report BRITE/EURAM P-89-3275, Univ. of Karlsruhe, Karlsruhe, Germany, 1994.
  • 19. N. Erarslan, D.J. Williams, Experimental, numerical and analytical studies on tensile strength of rocks, International Journal of Rock Mechanics and Mining Sciences , 49 : 21–30, 2012.
  • 20. International Federation for Structural Concrete (fib), Structural Concrete. The Textbook on Behaviour, Design and Performance. Updated knowledge of the CEB/FIP Model Code 1990 , vol. 1, Bulletin No 1, fib, 1999.
  • 21. M.G.D. Geers, R. de Borst, W.A.M. Brekelmans, R.H.J. Peerlings, Strain-based transient-gradient damage model for failure analyses, Computer Methods in Applied Mechanics and Engineering , 160 (1–2): 133–153, 1998.
  • 22. I.M. Gitman, H. Askes, L.J. Sluys, Coupled-volume multi-scale modelling of quasi-brittle material, European Journal of Mechanics A/Solids , 27 (3): 302–327, 2008.
  • 23. A. Glema, T. Łodygowski, On importance of imperfections in plastic strain localization problems in materials under impact loading, Archives of Mechanics , 54 (5–6): 411–423, 2002.
  • 24. R. Glemberg, Dynamic analysis of concrete structures , Ph.D. dissertation, Chalmers University of Technology, Gothenburg, 1984.
  • 25. P. Grassl, M. Jirásek, Plastic model with non-local damage applied to concrete, International Journal for Numerical and Analytical Methods in Geomechanics , 30 : 71–90, 2006.
  • 26. U. Häußler-Combe, M. Kitzig, Modeling of concrete behavior under high strain rates with inertially retarded damage, International Journal of Impact Engineering , 36 (9): 1106–1115, 2009.
  • 27. O.M. Heeres, A.S.J. Suiker, R. de Borst, A comparison between the Perzyna viscoplastic model and the Consistency viscoplastic model, European Journal of Mechanics A/Solids , 21 : 1–12, 2002.
  • 28. D.A. Hordijk, Local approach to fatigue of concrete , Ph.D. dissertation, Delft University of Technology, Delft, 1991.
  • 29. L.M. Kachanov, Time of rupture process under creep conditions [in Russian], Izd. Akad. Nauk SSSR, Otd. Tekh. Nauk , 8 : 26–31, 1958.
  • 30. Ł. Kaczmarczyk, C.J. Pearce, N. Bićanić, E. de Souza Neto, Numerical multiscale solution strategy for fracturing heterogeneous materials, Computer Methods in Applied Mechanics and Engineering , 199 (17): 1100–1113, 2010.
  • 31. S.-K. Lee, S.-K. Woo, Y.-C. Song, Softening response properties of plain concrete by large-scale direct tension test, Magazine of Concrete Research , 60 (1): 33–40, 2008.
  • 32. T. Li, J.-J. Marigo, D. Guilbaud, S. Potapov, Gradient damage modeling of brittle frac- ture in an explicit dynamics context, International Journal for Numerical Methods in Engineering , 108 (11): 1381–1405, 2016.
  • 33. T. Liebe, P. Steinmann, Two strategies towards geometrically non-linear isotropic gradient damage, Journal of the Mechanical Behaviour of Materials , 13 : 175–194, 2002.
  • 34. I. Marzec, J. Tejchman, A. Winnicki, Computational simulations of concrete behaviour under dynamic conditions using elasto-visco-plastic model with non-local softening, Computers & Concrete , 15 (4): 515–545, 2015.
  • 35. J. Mazars, G. Pijaudier-Cabot, Continuum damage theory – application to concrete, ASCE Journal of Engineering Mechanics , 115 : 345–365, 1989.
  • 36. L. Nilsson, Impact loading on concrete structures. A constitutive modelling, FE analysis, and experimental study of nonlinear wave propagation , Number 79:1, Chalmers Univ. of Tech., Dept. of Structural Mechanics, Göteborg, Sweden, 1979.
  • 37. J. Ožbolt, J. Bošnjak, E. Sola, Dynamic fracture of concrete compact tension specimen: Experimental and numerical study, International Journal of Solids and Structures , 50 : 4270–4278, 2013.
  • 38. J. Pamin, Gradient plasticity and damage models: a short comparison, Computational Materials Science , 32 : 472–479, 2005.
  • 39. J. Pamin, A. Wosatko, Static gradient damage simulations using stabilized finite elements, Journal of Theoretical and Applied Mechanics , 50 (3): 841–853, 2012.
  • 40. R.R. Pedersen, A. Simone, L.J. Sluys, An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage, Engineering Fracture Mechanics , 75 (13): 3782–3805, 2008.
  • 41. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, J.H.P. de Vree, Gradient-enhanced damage for quasi-brittle materials, International Journal for Numerical Methods in Engineering , 39 (19): 3391–3403, 1996.
  • 42. R.H.J. Peerlings, M.G.D. Geers, R. de Borst, W.A.M. Brekelmans, A critical comparison of nonlocal and gradient-enhanced softening continua, International Journal of Solids and Structures , 38 (44–45): 7723–7746, 2001.
  • 43. P. Perzyna, Fundamental problems in viscoplasticity, [in:] Recent Advances in Applied Mechanics , vol. 9, pp. 243–377, New York, USA, 1966, Academic Press.
  • 44. C. Rocco, G.V. Guinea, J. Planas, M. Elices, Mechanisms of rupture in splitting tests, ACI Materials Journal , 96 : 52–60, 1999.
  • 45. J.G. Rots, Computational modeling of concrete fracture , Ph.D. dissertation, Delft University of Technology, Delft, 1988.
  • 46. G. Ruiz, M. Ortiz, A. Pandolfi, Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders, International Journal for Numerical Methods in Engineering , 48 : 963–994, 2000.
  • 47. J.C.J. Schellekens, Computational strategies for composite structures , Ph.D. dissertation, Delft University of Technology, Delft, 1992.
  • 48. J.C. Simo, J.W. Ju, Strain- and stress-based continuum damage models – I. Formulation, II. Computational aspects, International Journal of Solids and Structures , 23 (7): 821–869, 1987.
  • 49. A. Simone, H. Askes, R.H.J. Peerlings, L.J. Sluys, Interpolation requirements for implicit gradient-enhanced continuum damage models, Communications in Numerical Methods in Engineering , 19 : 563–572, 2003 (see also [50]).
  • 50. A. Simone, H. Askes, R.H.J. Peerlings, L.J. Sluys, Corrigendum ’Interpolation require- ments for implicit gradient-enhanced continuum damage models’, Communications in Numerical Methods in Engineering , 20 : 163–165, 2004.
  • 51. A. Simone, H. Askes, L.J. Sluys, Incorrect initiation and propagation of failure in non-local and gradient-enhanced media, International Journal of Solids and Structures , 41 (2): 351–363, 2004.
  • 52. E.C. Simons, J. Weerheijm, L.J. Sluys, A viscosity regularized plasticity model for ceramics, European Journal of Mechanics A/Solids , 72 : 310–328, 2018.
  • 53. Ł Skarżyński, M. Nitka, J. Tejchman, Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray CT images of internal structure, Engineering Fracture Mechanics , 147 : 13–35, 2015.
  • 54. L.J. Sluys, Wave propagation, localization and dispersion in softening solids , Ph.D. dissertation, Delft University of Technology, Delft, 1992.
  • 55. L.J. Sluys, Dynamic failure in reinforced concrete structures, [in:] G.M.A. Kusters, M.A.N. Hendriks [Eds], DIANA Computational Mechanics ’94 , pp. 193–203, Kluwer Acadamic Publishers, Dordrecht, 1994.
  • 56. L.J. Sluys, R. de Borst, Failure in plain and reinforced concrete – an analysis of crack width and crack spacing, International Journal of Solids and Structures , 33 : 3257–3276, 1996.
  • 57. A. Stolarski, W. Cichorski, Numerical analysis of a reinforced concrete beam and a deep beam under impulsive loading, Computer Assisted Mechanics and Engineering Sciences , 12 (4): 299–328, 2005.
  • 58. R.L. Taylor, FEAP – A Finite Element Analysis Program, Version 7.4, User manual, University of California at Berkeley, Berkeley, 2001.
  • 59. J.W. Tedesco, C.A. Ross, S.T. Kuennen, Experimental and numerical analysis of high strain rate splitting tensile tests, ACI Materials Journal , 90 (2): 162–169, 1993.
  • 60. D.-K. Thai, S.-E. Kim, Failure analysis of reinforced concrete walls under impact loading using the finite element approach, Engineering Failure Analysis , 45 : 252–277, 2014.
  • 61. J.G.M. van Mier, Strain-softening of concrete under multiaxial loading conditions , Ph.D. dissertation, Eindhoven University of Technology, Eindhoven, 1984.
  • 62. R.A. Vonk, Softening of concrete loaded in compression , Ph.D. dissertation, Eindhoven University of Technology, Eindhoven, 1992.
  • 63. T. Waffenschmidt, C. Polindara, A. Menzel, B. Sergio, A gradient-enhanced large- deformation continuum damage model for fibre-reinforced materials, Computer Methods in Applied Mechanics and Engineering , 268 : 801–842, 2014.
  • 64. W.M. Wang, Stationary and propagative instabilities in metals – a computational point of view , Ph.D. dissertation, Delft University of Technology, Delft, 1997.
  • 65. Z. Wang, L.H. Poh, A homogenized localizing gradient damage model with micro inertia effect, Journal of the Mechanics and Physics of Solids , 116 : 370–390, 2018.
  • 66. B. Wcisło, J. Pamin, K. Kowalczyk-Gajewska, Gradient-enhanced damage model for large deformations of elastic-plastic materials, Archives of Mechanics , 65 (5): 407–428, 2013.
  • 67. A. Winnicki, Crack closing effect in damage mechanics, [in:] W. Biliński [Ed.], Proc. XII Conf. Computer Methods in Design and Analysis of Hydrostructures , pp. 155–164, Cracow University of Technology, Cracow, 2000.
  • 68. A. Winnicki, Viscoplastic and internal discontinuity models in analysis of structural concrete, Series Civil Engineering, Monograph 349, Cracow University of Technology, Cracow, 2007.
  • 69. A. Winnicki, C.J. Pearce, N. Bićanić, Viscoplastic Hoffman consistency model for concrete, Computers & Structures , 79 : 7–19, 2001.
  • 70. A. Wosatko, A. Genikomsou, J. Pamin, M.A. Polak, A. Winnicki, Examination of two reg- ularized damage-plasticity models for concrete with regard to crack closing, Engineering Fracture Mechanics , 194 : 190–211, 2018.
  • 71. A. Wosatko, J. Pamin, A. Winnicki, Gradient damage in simulations of behaviour of RC bars and beams under static and impact loading, Archives of Civil Engineering , 52 (1): 455–477, 2006.
  • 72. A. Wosatko, A. Winnicki, J. Pamin, Numerical analysis of Brazilian split test on concrete cylinder, Computers & Concrete , 8 (3): 243–278, 2011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03163c88-f2d4-4608-81e6-afc77c18b1c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.