Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The development of an autonomous mobile robot (AMR) with an eye-in-hand robot arm atop for depressing elevator button is proposed. The AMR can construct maps and perform localization using the ORB-SLAM algorithm (the Oriented FAST [Features from Accelerated Segment Test] and Rotated BRIEF [Binary Robust Independent Elementary Features] feature detector-Simultaneous Localization and Mapping). It is also capable of real-time obstacle avoidance using information from 2D-LiDAR sensors. The AMR, robot manipulator, cameras, and sensors are all integrated under a robot operating system (ROS). In experimental investigation to dispatch the AMR to depress an elevator button, AMR navigation initiating from the laboratory is divided into three parts. First, the AMR initiated navigation using ORB-SLAM for most of the journey to a waypoint nearby the elevator. The resulting mean absolute error (MAE) is 8.5 cm on the x-axis, 10.8 cm on the y-axis, 9.2-degree rotation angle about the z-axis, and the linear displacement from the reference point is 15.1 cm. Next, the ORB-SLAM is replaced by an odometry-based 2D-SLAM method for further navigating the AMR from waypoint to a point facing the elevator between 1.5 to 3 meter distance, where the ORB-SLAM is ineffective due to sparse feature points for localization and where the elevator can be clearly detected by an eye-in-hand machine vision onboard the AMR. Finally, the machine vision identifies the position in space of the elevator and again the odometry-based 2D-SLAM method is employed for navigating the AMR to the front of the elevator between 0.3 to 0.5 meter distance. Only at this stage can the small elevator button be detected and reached by the robot arm on the AMR. An average 60% successful rate of button depressing by the AMR starting at the laboratory is obtained in the experiments. Improvements for successful elevator button depressing rate are also pointed out.
Słowa kluczowe
Rocznik
Tom
Strony
25--35
Opis fizyczny
Bibliogr. 26 poz., rys.
Bibliografia
- [1] R. Smith, M. Self and P. Cheeseman, “Estimating uncertain spatial relationships in robotics”. In: IEEE International Conference on Robot and Automation, Raleigh, NC, USA, 31 March-3 April 1987, DOI: 10.1109/ROBOT.1987.1087846.
- [2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping (SLAM): Part I”, IEEE Robot & Automation Magazine, vol. 13, no. 2, 2006, 99-110, DOI: 10.1109/MRA.2006.1638022.
- [3] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): Part II”, IEEE Robot & Automation Magazine, vol. 13, no. 3, 2006, 108-117, DOI: 10.1109/MRA.2006.1678144
- [4] G. Grisetti, C. Stachniss and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized particle filters”, IEEE Transactions on Robot, vol. 23, no. 1, 2007, 34-46, DOI: 10.1109/TRO.2006.889486.
- [5] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, U. Klingauf and O. von Stryk, “Hector open source modules for autonomous mapping and navigation with rescue robots”, Robot Soccer World Cup, 2013, 624-631, DOI: 10.1007/978-3-662-44468-9_58.
- [6] W. Hess, D. Kohler, H. Rapp and D. Andor, “Real-time loop closure in 2D LIDAR SLAM”. In: IEEE International Conference on Robot and Automation. Stockholm, Sweden, 16-20 May 2016, 1271-1278. DOI: 10.1109/ICRA.2016.7487258.
- [7] A. J. Davison, I. D. Reid, N. D. Molton and O.Stasse, “MonoSLAM: real-time single camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, 2007, 1052-1067, DOI: 10.1109/TPAMI.2007.1049.
- [8] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces”, In: Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,Nara, Japan, 13-16 November 2007, 225-234, DOI: 10.1109/ISMAR.2007.4538852.
- [9] R. Mur-Artal, J. M. M. Montiel, J. D. Tardós, “ORB-SLAM: a versatile and accurate monocular SLAM system”, IEEE Transactions on Robot, vol. 31, no. 5, 2015, 1147-1163, DOI: 10.1109/TRO.2015.2463671.
- [10] P. E. Hart, N. J. Nilsson and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths”, IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, 1968, 100-107, DOI: 10.1109/TSSC.1968.300136.
- [11] A. J. Bostel and V. K. Saigar, “Dynamic control systems for AGVs”, IEEE Trans. Computing & Control Engineering, vol. 7, no. 4, 1996, 169-176, DOI: 10.1049/cce:19960403.
- [12] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown terrain”, IEEE Transactions on Robot, vol. 21, no. 3, 2005, 354-363, DOI: 10.1109/TRO.2004.838026.
- [13] D. Fox, W. Burgard and S. Thrun, “The dynamic window approach to collision avoidance”, IEEE Robot & Automation Magazine, vol. 4, no. 1, 1997, 23-33, DOI: 10.1109/100.580977.
- [14] Kousi N, Gkournelos C, Aivaliotis S, et al. Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines, Procedia Manufacturing, 2019, 28: 121-126.
- [15] G. R. Sangeetha, N. Kumar, P. R. Hari and S. Sasikumar, “Implementation of a stereo vision based system for visual feedback control of robotic arm for space manipulations”, Procedia Computer Science, vol. 133, 2018, 1066-1073, DOI: 10.1016/j.procs.2018.07.031.
- [16] J. Shaw and W. L. Chi, “Automatic classification of moving objects on an unknown speed production line with an eye-in-hand robot manipulator. Journal of Marine Science and Technology, vol. 26, no. 3, 2018, 387-396, DOI: 10.6119/JMST.2018.06_(3).0010.
- [17] S. J. Hosseininia, K. Khalili and S. M. Emam, “Flexible automation in porcelain edge polishing using machine vision”, Procedia Technology, vol. 22, 2016, 562-569, DOI: 10.1016/j.protcy.2016.01.117.
- [18] M. Laganowska, “Application of vision systems to the navigation of the mobile robots using makers”, Transportation Research Procedia, vol. 40, 2019, 1449-1452, DOI: 10.1016/j.trpro.2019.07.200.
- [19] Y. M. Wang Y. Li and J. B. Zheng, “A camera calibration technique based on OpenCV”. In: The 3rd International Conference on Information Sciences and Interaction Sciences, Chengdu, China, 23-25 June 2010, DOI: 10.1109/ICICIS.2010.5534797.
- [20] C. Zhou and X. Liu, “The study of applying the AGV navigation system based on two dimensional bar code”. In: International Conference on Industrial Informatics – Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 3-4 Dec. 2016, 206-209, DOI: 10.1109/ICIICII.2016.0057.
- [21] D. S. Schueftan, M. J. Colorado and I. F. M. Bernal, “Indoor mapping using SLAM for applications in flexible manufacturing systems”. In: IEEE 2nd Colombian Conference on Automatic Control (CCAC), Manizales, Colombia, 14-16 Oct. 2015, DOI: 10.1109/CCAC.2015.7345226.
- [22] A. S. Sabale, “Accuracy measurement of depth using Kinect sensor”. In: Conference on Advances in Signal Processing (CASP), Pune, India, 9-11 June 2016, DOI: 10.1109/CASP.2016.7746156.
- [23] J. P. M. dos Santos, SmokeNav - simultaneous localization and mapping in reduced visibility scenarios. MSc thesis, Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal, September 2013. http://hdl.handle.net/10316/26963
- [24] M. Rahchamani, “Developing and evaluating a low-cost tracking method based on a single camera and a large marker”. In: 25th National and 3rd International Iranian Conference on Biomedical Enginnering (ICBME). Tehran, Iran, 29-30 November 2018, DOI: 10.1109/ICBME.2018.8703592.
- [25] B. P. Gerkey. AMCL package, http://wiki.ros.org/amcl.
- [26] Perspective-n-Point (PnP) transform, https://docs.opencv.org/master/dc/d2c/tutorial_real_time_pose.html.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-030faabf-a7c8-4513-9da3-01f73350594f