PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie bioaugmentacji w procesach biologicznego oczyszczania ścieków i utylizacji osadów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of bioaugmentation in biological wastewater treatment and sludge utilization
Języki publikacji
PL
Abstrakty
PL
Atrakcyjnym rozwiązaniem problemów towarzyszących narażeniu wielu oczyszczalni ścieków na wysoki ładunek zanieczyszczeń występujących w ściekach jest metoda bioaugmentacji. Polega ona na wprowadzeniu do osadu czynnego dodatkowej puli bakterii i/lub grzybów mikroskopowych o pożądanych właściwościach, charakteryzujących się zdolnością do agregacji i adhezji, produkcji substancji polisacharydowych, tworzenia biofilmu, syntezy bioflokulantów oraz synergicznie oddziałujących z mikroorganizmami autochtonicznymi, niewrażliwych na zmiany parametrów środowiskowych oraz o wysokiej tolerancji na substancje toksyczne. Inokulacja osadu czynnego takimi mikroorganizmami może nie tylko prowadzić do zwiększenia bioróżnorodności oraz biomasy mikroorganizmów bytujących w reaktorze biologicznym, przyspieszać rozkład zanieczyszczeń organicznych, usprawniać proces usuwania związków biogennych, ale także zapobiegać nadmiernemu rozwojowi bakterii nitkowatych, poprawiać właściwości sedymentacyjne osadu, przeciwdziałać pienieniu osadu oraz wspomagać proces jego regeneracji. Duże nadzieje wiąże się obecnie z opracowaniem nowych metod dostarczania komórek do osadu czynnego z użyciem nanomateriałów, perspektywami wykorzystania nanorurek węglowych jako materiałów adsorbujących związki toksyczne oraz wykorzystaniem wiedzy z zakresu modulacji zjawiska sygnalizacji zagęszczenia bakterii (quorum sensing) prowadzącego do tworzenia biofilmu. Ze względu na możliwość zastosowania bioaugmentacji na różnych etapach biologicznego oczyszczania ścieków, może ona w znaczącym stopniu usprawniać pracę oczyszczalni ścieków. Są jednak pewne ograniczenia tej metody, związane ze słabą przeżywalnością inokulantów oraz zanikiem ich aktywności po wprowadzeniu do nowego dla nich środowiska. Aby poszerzyć wiedzę w tym zakresie konieczne jest monitorowanie losu i aktywności inokulantów z wykorzystaniem nowoczesnych technik molekularnych oraz opracowanie nowych metod dostarczania komórek do ekosystemu osadu czynnego. Wyzwaniem na przyszłość jest także wdrożenie sprawdzonych w laboratorium praktyk bezpośrednio w oczyszczalniach ścieków.
EN
Bioaugmentation method is an attractive solution to problems associated with exposure of many wastewater treatment plants to high load of wastewater pollutants. This strategy involves introduction to activated sludge an additional pool of bacteria or microscopic fungi of desired properties, capable of aggregation and adhesion, production of polysaccharide substances, biofilm formation, synthesis of bioflocculants and synergistic interactions with indigenous microorganisms, insensitive to changes in environmental parameters and of high tolerance to toxic substances. Not only may inoculation of activated sludge with such microorganisms lead to the increased biodiversity and biomass of microorganisms living in a biological reactor, accelerate the decomposition of organic pollutants, improve the process of biogenic compounds removal, but also prevent excessive growth of filamentous bacteria, improve sedimentation properties of sludge, counteract sludge foaming and support the process of its regeneration. Currently, great promise is held out for the development of new methods of cell delivery to the activated sludge that employ nanomaterials, prospects of using carbon nanotubes as adsorbents of toxic compounds and use of knowledge in the field of modulation of bacterial quorum sensing leading to biofilm formation. Since bioaugmentation could be employed at various stages of biological wastewater treatment, it may significantly improve the operation of wastewater treatment plants. However, this method has some limitations, related to the poor survival rates of inoculants and disappearance of their activity after being introduced into the new environment. In order to broaden our understanding of this area, it is necessary to monitor the fate and activity of inoculants using modern molecular techniques and to develop new methods of cell delivery to the active sludge ecosystem. Yet, implementation of the practices tested in the laboratory environment directly into the wastewater treatment plants remains a challenge for the future.
Czasopismo
Rocznik
Strony
35--44
Opis fizyczny
Bibliogr. 77 poz., rys., tab.
Twórcy
autor
  • Uniwersytet Śląski, Wydział Biologii i Ochrony Środowiska, Katedra Biochemii, ul. Jagiellońska 28, 40-032 Katowice
autor
  • Uniwersytet Śląski, Wydział Biologii i Ochrony Środowiska, Katedra Biochemii, ul. Jagiellońska 28, 40-032 Katowice
Bibliografia
  • 1. N. SINGHAL, O. PEREZ-GARCIA: Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes. Frontiers in Environmental Science 2016, Vol. 4, pp. 1–5.
  • 2. K.F. CHASIB: Extraction of phenolic pollutants (phenol and p-chlorophenol) from industrial wastewater. Journal of Chemical Engineering Data 2013, Vol. 56, No. 6, pp. 1549–1564.
  • 3. V. ALMAGUER-CANTÚ, L. H. MORALES-RAMOS, I. BALDERAS-RENTERÍA: Biosorption of lead(II) and cadmium(II) using Escherichia coli genetically engineered with mice metallothionein I. Water Science and Technology 2011, Vol. 68, No. 8, pp. 1607–1613.
  • 4. S. MORLING, N. ÅSTRAND, A. N. LINDAR: Biological removal of nitrogen compounds at a coke-oven effluent stream. Journal of Water Resource and Protection 2012, Vol. 4, pp. 400–406.
  • 5. A. AGRAWAL, R. S. PANDEY, B. SHARMA: Water pollution with special reference to pesticide contamination in India. Journal of Water Resource and Protection 2010, Vol. 2, No. 5, pp. 432–448.
  • 6. C. MIÈGE, J. M. CHOUBERT, L. RIBEIRO, M. EUSÈBE, M. COQUERY: Fate of pharmaceuticals and personal care products in wastewater treatment plants – conception of a database and first results. Environmental Pollution 2009, Vol. 157, pp. 1721–1726.
  • 7. A. M. SAUNDERS, M. ALBERTSEN, J. VOLLERTSEN, P. H. NIELSEN: The activated sludge ecosystem contains a core community of abundant organisms. ISME Journal 2016, Vol. 10, No. 1, pp. 11–20.
  • 8. M. HERRERO, D. C. STUCKEY: Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 2015, Vol. 140, pp. 119–128.
  • 9. M. CARBALLA, G. FINK, F. OMIL, J. LEMA, T. TERNES: Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Research 2008, Vol. 42, No. 1–2, pp. 287–295.
  • 10. W. FU, H. FU, K. SKØTT, M. YANG: Modeling the spill in the Songhua River after the explosion in the petrochemical plant in Jilin. Environmental Science and Pollution Research 2008, Vol. 15, No. 3, pp. 178–181.
  • 11. B. CAI, L. XIE, D. YANG, J. P. ARCANGELI: Toxicity evaluation and prediction of toxic chemicals on activated sludge system. Journal of Hazardous Materials 2010, Vol. 177, No. 1–3, pp. 414–419.
  • 12. M. H. GERARDI: Wastewater Bioaugmentation and Biostimulation. DEStech Publications, Lancaster 2016.
  • 13. J. ZHOU, Y. XU, Y. QU, L. TAN: Decolorization of Brilliant Scarlet GR enhanced by bioaugmentation and redox mediators under high-salt conditions. Bioresource Technology 2010, Vol. 101, No. 2, pp. 586–591.
  • 14. V. M. MONSALVO, M. TOBAJAS, A. F. MOHEDANO, J. J. RODRIGUEZ: Intensification of sequencing batch reactors by cometabolism and bioaugmentation with Pseudomonas putida for the biodegradation of 4-chlorophenol. Journal of Chemical Technology and Biotechnology 2012, Vol. 87, No. 9, pp. 1270–1275.
  • 15. E. XENOFONTOS, A. M. TANASE, I. STOICA, I. VYRIDES: Newly isolated alkalophilic Advenella species bioaugmented in activated sludge for high p-cresol removal. New Biotechnology 2016, Vol. 33, No. 2, pp. 305–310.
  • 16. S. BATHE, N. SCHWARZENBECK, M. HAUSNER: Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid. Bioresource Technology 2009, Vol. 100, No. 12, pp. 2902–2909.
  • 17. F.-B. YU, S.W. ALI, L.-B. GUAN, S.-P. LI, S. ZHOU: Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17, and its impact on reactor bacterial communities. Journal of Hazardous Materials 2010, Vol. 176, No. 1–3, pp. 20–26.
  • 18. S. H. LEE, K. OTAWA, M. ONUKI, H. SATHOH, T. MINO: Population dynamics of phage-host system of Microlunatus phosphovorus indigenous in activated sludge. Journal of Microbiology and Biotechnology 2007, Vol. 17, No. 10, pp. 1704–1707.
  • 19. J. J. BARR, F. R. SLATER, T. FUKUSHIMA, P. L. BOND: Evidence for bacteriophage activity causing community and performance changes in a phosphorus-removal activated sludge. FEMS Microbiology Ecology 2010, Vol. 74, No. 3, pp. 631–642.
  • 20. H. F. STROO, A. LEESON, C. H. WARD: Bioaugmentation for Groundwater Remediation. Springer Science and Business Media, New York 2013.
  • 21. M. CIRJA, G. HOMMES, P. IVASHECHKIN, J. PRELL, A. SCHÄFFER, P. F. CORVINI, M. LENZ: Impact of bioaugmentation with Sphingomonas sp. strain TTNP3 in membrane bioreactors degrading nonylphenol. Applied Microbiology and Biotechnology 2009, Vol. 84, No. 1, pp. 183–189.
  • 22. S. C. S. MARTINS, C. M. MARTINS, L. M. C. G. FIÚZA, S. T. SANTAELLA: Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology 2013, Vol. 12, No. 28, pp. 4412–4418.
  • 23. F.-Y. HSU, Z.-Y. WANG, B.-V. CHANG: Use of microcapsules with electrostatically immobilized bacterial cells or enzyme extract to remove nonylphenol in wastewater sludge. Chemosphere 2013, Vol. 91, No. 6, pp. 745–750.
  • 24. J. SIPMA, M. BEGOÑA OSUNA, M. A. E. EMANUELSSON, P. M. L. CASTRO: Biotreatment of industrial wastewaters under transient-state conditions: Process stability with fluctuations of organic load, substrates, toxicants, and environmental parameters. Critical Reviews in Environmental Science and Technology 2010, Vol. 40, No. 2, pp. 147–197.
  • 25. T. R. DEVLIN, A. di BIASE, M. KOWALSKI, J. A. OLESZKIEWICZ: Granulation of activated sludge under low hydrodynamic shear and different wastewater characteristics. Bioresource Technology 2017, Vol. 224, pp. 229–235.
  • 26. Y. MIAO, R. LIAO, X. ZHANG, B. LIU, Y. LI, B. WU, A. LI: Metagenomic insights into salinity effect on diversity and abundance of denitrifying bacteria and genes in an expanded granular sludge bed reactor treating high-nitrate wastewater. Chemical Engineering Journal 2015, Vol. 277, pp. 116–123.
  • 27. A. BARTROLÍ, J. CARRERA, J. PÉREZ: Bioaugmentation as a tool for improving the start-up and stability of a pilotscale partial nitrification biofilm airlift reactor. Bioresource Technology 2011, Vol. 102, No. 6, pp. 4370–4375.
  • 28. Z. F. QIU, Q. ZHOU, D. H. YANG, F. T. LI: Startup and commissioning of A2/O municipal wastewater treatment plant. Water and Wastewater Engineering 2005, Vol. 31, No. 9, pp. 30–33.
  • 29. Z. DYMACZEWSKI [red.]: Poradnik eksploatatora oczyszczalni ścieków. PZITS Oddział Wielkopolski, Poznań 2011.
  • 30. J. Q. JIANG, D. H. YANG, Q. ZHOU: Natural cultivation and acclimation of activated sludge of municipal wastewater at lower temperature and concentration. Journal of University of Science and Technology of Suzhou 2005, Vol. 18, No. 1, pp. 1–4.
  • 31. J. GUO, J. WANG, D. CUI, L. WANG, F. MA, C.-C. CHANG, J. YANG: Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures. Bioresource Technology 2010, Vol. 101, No. 17, pp. 6622–6629.
  • 32. R. SARASWATHI, M. K. SASEETHARAN: Effects of temperature and pH on floc stability and biodegradation in paper. Journal of Engineering Research and Studies 2010, Vol. 1, No. 2, pp. 166–176.
  • 33. N. M. CHONG, S. L PAI., C. H. CHEN: Bioaugmentation of an activated sludge receiving pH shock loadings. Bioresource Technology 1997, Vol. 59, No. 2–3, pp. 235–240.
  • 34. Y. QU, R. ZHANG, Q. MA, J. ZHOU, B. YAN: Bioaugmentation with a novel alkali-tolerant Pseudomonas strain for alkaline phenol wastewater treatment in sequencing batch reactor. World Journal of Microbiology and Biotechnology 2011, Vol. 27, No. 8, pp. 1919–1926.
  • 35. Z. YU, W. W. MOHN: Bioaugmentation with the resin aciddegrading bacterium Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Research 2002 Vol. 36, pp. 2793–2801.
  • 36. Q. LI, M. WANG, J. FENG, W. ZHANG, Y. WANG, Y. GU, C. SONG, S. WANG: Treatment of high-salinity chemical wastewater by indigenous bacteria – bioaugmented contact oxidation. Bioresource Technology 2013, Vol. 144, pp. 380–386.
  • 37. F. KARGI, A. UYGUR: Improved nutrient removal from saline wastewater in an SBR by Halobacter supplemented activated sludge. Environmental Engineering Science 2005, Vol. 22, No. 2, pp. 170–176.
  • 38. K. SHI, W. ZHOU, H. ZHAO, Y. ZHANG: Performance of halophilic marine bacteria inocula on nutrient removal from hypersaline wastewater in an intermittently aerated biological filter. Bioresource Technology 2012, Vol. 113, pp. 280–287.
  • 39. J. LIU, Y. YU, Y. CHANG, B. LI, D. BIAN, W. YANG, H. HUO, M. HUO, S. ZHU: Enhancing quinoline and phenol removal by adding Comamonas testosteroni bdq06 in treatment of an accidental dye wastewater. International Biodeterioration and Biodegradation 2016, Vol. 115, pp. 74–82.
  • 40. D. WEN, J. ZHANG, R. XIONG, R. LIU, L. CHEN: Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater. Journal of Environmental Sciences 2013, Vol. 25, No. 11, pp. 2265–2271.
  • 41. M. Z. WANG, G. Q. YANG, H. MIN, Z. M. LV, X. Y. JIA: Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: degradation study and analysis of its mechanisms. Water Research 2009, Vol. 43, No. 17, pp. 4187–4196.
  • 42. P. XU, W. MA, H. HAN, S. JIA, B. HOU: Isolation of a naphthalene-degrading strain from activated sludge and bioaugmentation with it in a MBR treating coal gasification wastewater. Bulletin of Environmental Contamination and Toxicology 2015, Vol. 94, No. 3, pp. 358–364.
  • 43. N. A. ZHOU, H. L. GOUGH: Enhanced biological trace organic contaminant removal: A lab-scale demonstration with bisphenol A-degrading bacteria Sphingobium sp. BiD32. Environmental Science and Technology 2016, Vol. 50, No. 15, pp. 8057–8066.
  • 44. Y. Q. SUN, P. DING, P. PENG, H. YANG, L. LI: Conjugative transfer of dioxin-catabolic megaplasmids and bioaugmentation prospects of a Rhodococcus sp. Environmental Science and Technology 2017, Vol. 51, No. 11, pp. 6298–6307.
  • 45. R. JIN, H. YANG, A. ZHANG, J. WANG, G. LIU: Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). Journal of Hazardous Materials 2009, Vol. 163, No. 2–3, pp. 1123–1128.
  • 46. W. HAILEI., L. LI, L. PING, W. LING, L. LEI, Y. JIANMING: Metagenomic insight into the bioaugmentation mechanism of Phanerochaete chrysosporium in an activated sludge system treating coking wastewater. Journal of Hazardous Materials 2017, Vol. 321, pp. 820–829.
  • 47. P. KASZYCKI, H. KOŁOCZEK: Biodegradation of formaldehyde and its derivatives in industrial wastewater with methylotrophic yeast Hansenula polymorpha and with the yeast-bioaugmented activated sludge. Biodegradation 2002, Vol. 13, No. 2, pp. 91–99.
  • 48. D. PARK, D. S. LEE, Y. M. KIM, J. M. PARK: Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresource Technology 2008, Vol. 99, No. 6, pp. 2092–2096.
  • 49. X. QUAN, H. SCHI, H. LIU, P. LV, Y. QIAN: Enhancement of 2,4-dichlorophenol degradation in conventional activated sludge systems bioaugmented with mixed special culture. Water Research 2004, Vol. 38, No. 1, pp. 245–253.
  • 50. Y. L. YAO, Z. M. LU, F. X. ZHU, H. MIN, C. M. BIAN: Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation. Journal of Hazardous Materials 2013, Vol. 261, pp. 550–558.
  • 51. A. DHOUIB, M. ELLOUZ, F. ALOUI, S. SAYADI: Effect of bioaugmentation of activated sludge with white-rot fungi on olive mill wastewater detoxification. Letters in Applied Microbiology 2006, Vol. 42, No. 4, pp. 405–411.
  • 52. H. LI, L. TAN, S. NING, M. HE: Reactor performance and microbial community dynamics during aerobic degradation and detoxification of Acid Red B with activated sludge bioaugmented by a yeast Candida tropicalis TL-F1 in MBR. International Biodeterioration and Biodegradation 2015, Vol. 104, pp. 149–156.
  • 53. S. CHATARAJ, H. J. PUROHIT, A. SHARMA, N. B. JADEJA, D. MADAMWAR: Treatment of common effluent treatment plant wastewater in a sequential anoxic-oxic batch reactor by developed bacterial consortium VN11. Applied Biochemistry and Biotechnology 2016, Vol. 179, No. 3, pp. 514–529.
  • 54. S. SODA, H. OTSUKI, D. INOUE, H. TSUTSUI, K. SEI, M. IKE: Transfer of antibiotic multiresistant plasmid RP4 from Escherichia coli to activated sludge bacteria. Journal of Bioscience and Bioengineering 2008, Vol. 106, No. 3, pp. 292–296.
  • 55. D. CUI, A. LI, T. QIU, R. CAI, C. PANG, J. WANG, J. YANG, F. MA, N. REN: Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature. Frontiers of Environmental Science and Engineering 2014, Vol. 8, No. 6, pp. 937–944.
  • 56. J. GUO, Y. PENGA, H. HUANG, S. WANG, S. GE, J. ZHANG, Z. WANG: Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. Journal of Hazardous Materials 2010, Vol. 179, pp. 471–479.
  • 57. L.-Y. PEI, Q. WAN, Z.-F. WANG, B.-B. WANG, X.-Y. ZHANG, Y.-P. HOU: Effect of long-term bioaugmentation on nitrogen removal and microbial ecology for an A2O pilot- scale plant operated in low SRT. Desalination and Water Treatment 2015, Vol. 55, No. 6, pp. 1567–1574.
  • 58. M. HENZE, M. C. M. van LOOSDRECHT, G. A. EKAMA, D. BRDJANOVIC: Biological Wastewater Treatment. Principles, Modelling and Design. IWA Publishing, London 2008.
  • 59. C. TAYÀ, A. GUISASOLA, J. A. BAEZA: Assessment of a bioaugmentation strategy with polyphosphate accumulating organisms in a nitrification/denitrification sequencing batch reactor. Bioresource Technology 2011, Vol. 102, pp. 7678–7684.
  • 60. M. SARGOLU: Biological phosphorus removal in a sequencing batch reactor by using pure cultures. Process Biochemistry 2005, Vol. 40, No. 5, pp. 1599–1603.
  • 61. H. L. TANG, Y. F. XIE, Y.-C. CHEN: Use of Bio-Amp, a commercial bio-additive for the treatment of grease trap wastewater containing fat, oil, and grease. Bioresource Technology 2012, Vol. 124, pp. 52–58.
  • 62. I. MANCONI, A. CARUCCI, P. LENS: Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnology and Bioengineering 2007, Vol. 98, No. 3, pp. 551–560.
  • 63. W. IKEDA-OHTSUBO, M. MIYAHARA, S.-W. KIM, T. YAMADA, M. MATSUOKA, A. WATANABE, S. FUSHINOBU, T. WAKAGI, H. SHOUN, K. MIYAUCHI, G. ENDO: Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2. Journal of Bioscience and Bioengineering 2013, Vol. 15, No. 1, pp. 37–42.
  • 64. V. P. TALE, J. S. MAKI, D. H. ZITOMER: Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Water Research 2015, Vol. 70, pp. 138–147.
  • 65. K. L. KOVÁCS, N. ÁCS, N. KOVÁCS, R. WIRTH, G. RÁKHELY, O. STRANG, Z. HERBEL, Z. BAGI: Improvement of biogas production by bioaugmentation. BioMed Research International 2013, Article ID 482653, pp. 1–7.
  • 66. I.-S. KIM, K. EKPEGHERE, S.-Y. HA, S.-H. KIM, B.-S. KIM, B. SONG, J. CHUN, J.-S. CHANG, H.-G. KIM, S.-C. KOH: An eco-friendly treatment of tannery wastewater using bioaugmentation with a novel microbial consortium. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering 2013, Vol. 48, No. 13, pp. 1732–1739.
  • 67. A. A. AL-GHEETHI, R. M. MOHAMED, A. N. EFAQ, I. NORLI, A. ABD HALID, H. K. AMIR, M. O. AB KADIR: Bioaugmentation process of secondary effluents for reduction of pathogens, heavy metals and antibiotics. Journal of Water and Health 2016, Vol. 14, No. 5, pp. 780–795.
  • 68. A. FAKHRU’L-RAZI, A. H. MOLLA: Enhancement of bioseparation and dewaterability of domestic wastewater sludge by fungal treated dewatered sludge. Journal of Hazardous Materials 2007, Vol. 147, No. 1–2, pp. 350–356.
  • 69. G. ZHENG, Z. WANG, D. WANG, L. ZHOU: Enhancement of sludge dewaterability by sequential inoculation of filamentous fungus Mucor circinelloides ZG-3 and Acidithiobacillus ferrooxidans LX5. Chemical Engineering Journal 2016, Vol. 284, pp. 216–223.
  • 70. S. B. SUBRAMANIAN, Y. SONG, R. D. TYAGI, R. Y. SURAMPALLI: SSPRSD using a filamentous fungal strain Penicillium expansum BS30 isolated from wastewater sludge. Journal of Environmental Engineering 2010, Vol. 136, No. 7, pp. 719–731.
  • 71. S. POSAVAC, T. LANDEKA DRAGIČEVIĆ, M. MARIJANA ZANOŠKI HREN: The improvement of dairy wastewater treatment efficiency by the addition of bioactivator. Mljekarstvo 2010, Vol. 60, No. 3, pp. 198–206.
  • 72. A. WOLNA-MURAWKA, M. JAKUBUS, J. JORDANOWSKA: ECO TABS™ preparation action in stabilization of sewage sludge part II: Assessment of microbiological properties of sludge. Proceedings of ECOpole 2016, Vol. 10, No. 1, pp. 367–378.
  • 73. H. DJEJAL, A. AMRANE: Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale. Journal of Environmental Science 2013, Vol. 25, No. 9, pp. 1906–1912.
  • 74. L. LOPERENA, M. D. FERRARI, V. SARAVIA, D. MURRO, C. LIMA, L. FERRANDO, A. FERNÁNDEZ, C. LAREO: Performance of a commercial inoculum for the aerobic biodegradation of a high fat content dairy wastewater. Bioresource Technology 2007, Vol. 98, No. 5, pp. 145–151.
  • 75. W. HAILEI., L. LI, L. PING, L. HIU, L. GUOSHENG, Y. JIANMING: The acceleration of sludge granulation using the chlamydospores of Phanerochaete sp. HSD. Journal of Hazardous Materials 2011, Vol. 192, pp. 963–969.
  • 76. Y. QU, X. ZHANG, Q. MA, J. DENG, Y. DENG, J. D. van-NOSTRAND, L. WU, Z. HE, Y. QIN, J. ZHOU, J. ZHOU: Microbial community dynamics and activity link to indigo production from indole in bioaugmented activated sludge systems. PLoS One 2015, Vol. 10, No. 9, pp. 1–15.
  • 77. H.-S. OH, K.-M. YEON, C.-S. YANG, R.-S. KIM, C.H. LEE, S. Y. PARK, J. Y. HAN, J.-K. LEE: Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environmental Science and Technology 2012, Vol. 46, No. 9, pp. 4877–4884.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-030971d3-881c-4716-bfb1-b2393c269006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.