Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mobility of a planetary vehicle has numerous constraints imposed by the types of terrain. Navigation is difficult through uneven and rocky terrain, and becomes worse due to abrupt changes of ground level which may cause a fall to a lower ground level. This article examines the effect of the soil’s parameters change due to repetitive falls on the vehicle’s dynamic behavior. After each free fall of the vehicle there is a collision of the vehicle’s wheel with the ground. If the ground is made up of soft soil there is an increase in the soil compactness after each collision. The increase in the soil compactness causes a change in the soil parameters. These changes modify the algorithm’s parameters of the vehicle’s dynamic model. The dynamic model is a quarter vehicle model with single rigid wheel which falls on soft soil. Simplified forms of the Pressure-Sinkage models of Bekker and Reece for the sinkage of a rigid body into soft soil are incorporated in the numerical solution of the governing equations of motion. The dynamic interaction of a rigid wheel and soft soil has three stages: sinkage stage, wheel dwell stage, and wheel pullout from soil stage. By comparing the simulations results when the soil’s parameters are kept constant and when their changes are incorporated in the dynamic model showed that the difference in the dynamic response are not significant and can be neglected. There is a gradual change in the dynamic mechanical quantities when the soil’s parameters are kept constant, while the changes in the dynamic mechanical quantities between the second fall and the successive falls are small.
Rocznik
Tom
Strony
65--72
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
Bibliografia
- [1] E. Bernstien, Probleme zur experimentellen motorplugmechanic,Heft: Der Motorwagen 16, 1913.
- [2] B. P. Goriatchkin, “Theory and development of agriculture machinery”, 1938.
- [3] M. G. Bekker, Theory of land locomotion the mechanics of vehicle mobility, University of Michigan Press, Ann Arbor, 1956.
- [4] J. Wong, Theory of ground vehicles, New York: J. Wiley, 1993.
- [5] J. Y. Wong, “On the study of wheel-soil interaction”, Journal of Terramechanics, vol. 21, no. 2, 1984, 117–131. DOI: 10.1016/0022-4898(84)90017-X.
- [6] S.K.Upadhyaya, D.Wulfsohn, J.Mehlschau, “An instrumented device to obtain traction related parameters”, Journal of Terramechanics, vol. 30, 1993,1–20. DOI: 10.1016/0022-4898(93)90027-U.
- [7] A. Reece, “Principles of soil vehicle mechanics”. In: Proceeding of the Institution of Mechanical Engineers, 1965.
- [8] G. Meirion-Griffith, M. Spenkom “A modified pressure-sinkage model for small rigid wheels on deformable terrains”, Journal of Terramechanics, vol. 48, no. 2, 2011, 149–155. DOI: 10.1016/j.jterra.2011.01.001.
- [9] J. Y. Wong, “An introduction to terramechanics”, Journal of Terramechanics, vol. 21, no. 1, 1984, 5–17. DOI: 10.1016/0022-4898(84)90004-1.
- [10] M. G. Bekker, Off the Road Locomotion, Ann Arbor, Michigan: The University of Michigan Press, 1960.
- [11] M. G. Bekker, Theory of Land Locomotion, Ann Arbor, Michigan: The University of Michigan Press, 1965.
- [12] A. Reece, “Problems of soil vehicle mechanics”, ATAC, Warren, MI, USA, 1964.
- [13] R. A. Liston, L. A. Martin, “Multipass behavior of a rigid wheel”. In: 2 Proc. Sec. Int. Conf. on Terrain-Vehicle Systems, Quebec City, Que., Toronto Univ. Press, 1966.
- [14] I. C. Holm, “Multi-pass behaviour of pneumatic tires”, Journal of Terramechanics, vol. 6, no.3, 1969, 347–71. DOI: 10.1016/0022-4898(69)90128-1.
- [15] C. Senatore, C. Sandu, “Off-road tire modeling and the multi-pass effect for vehicle dynamics simulation”, Journal of Terramechanics, vol. 48, no. 4, 2011, 265–276. DOI: 10.1016/j.jterra.2011.06.006.
- [16] S. Shaaban, “Evolution of the bearing capacity of dry sand with its density”, Journal of Terramechanics, vol. 20, nos. 3–4, 1983, 129–138. DOI: 10.1016/0022-4898(83)90044-7.
- [17] D. Dewhirst, “A load-sinkage equation for lunar soil”, AIAA Journal, vol. 2 (4), 1963, 761–762.
- [18] O. Onafeko, A.R. Reece, “Soil stresses and deformation beneath rigid wheels”, Journal of Terramechanics”, vol. 4, no. 1, 1967, 59–80. DOI: 10.1016/0022-4898(67)90104-8.
- [19] I. Shmulevich, U. Mussel, D. Wolf, “The effect of velocity on rigid wheel Performance”, Journal of Terramechanics, vol. 35, no. 3, 1998,189–207. DOI: 10.1016/S0022-4898(98)00022-6.
- [20] M. Grahn, “Prediction of sinkage and rolling resistance for off the road vehicles considering penetration velocity”, Journal of Terramechanics, vol. 28 , no. 4, 1991, 339–347. DOI: 0.1016/0022-4898(91)90015-X.
- [21] H. Shibly, “Dynamic Modeling of Planetary Vehicle’s Fall on Soft Soil”, Journal of Automation, Mobile Robotics, & Intelligent Systems, vol. 10, no 3, 2016, 21–27. DOI: 10.14313/JAMRIS_3-2016/20.
- [22] H. Shibly, K. Iagnemma, S. Dubowsky, “An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers”, Journal of Terramechanics, vol. 42, no. 1, 2005, 1–13. DOI: 10.1016/j.jterra.2004.05.002.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03087d5e-2c1d-4101-ae8f-6919123aa1fd