PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Students’ view of Quantum Information Technologies. Part 3

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article is part of a course on Quantum Information Technologies QIT conducted at the Faculty of Electronics and Information Technology of the Warsaw University of Technology. The subject includes a publishing workshop exercised by engineering students. How do ICT engineers see QIT from their point of view? How can they implement quantum technologies in their future work? M.Sc. students usually have strictly declared topics for their master’s theses. The implementation of some works is at an advanced stage. The potential areas of application of QIT are defined and narrow if they are to intellectually expand the area of the completed theses. This is the idea of incorporating QIT components or interfaces into classic ICT solutions at the software and hardware level. It is possible to propose a solution in the form of a functional hybrid system. QIT systems should be functionally incorporated into the existing ICT environment, generating measurable added value. Such a task is quite demanding, but practice shows that it interests students. Solutions don’t have to be mature or even feasible. They can be dreams of young engineers. The exercise is a publication workshop related to the fast development of QIT. The article is a continuation of publication exercises conducted with previous groups of students participating in QIT lectures.
Twórcy
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
autor
  • Warsaw University of Technology, Warsaw, Poland
  • Sweklej, Bartłomiej
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] M. Wojtkowski, M. Bartoszewski, W. Buchwald, K. Joachimczyk, A. Kawala, and R. Romaniuk, “Students’ view of quantum information technologies, part 2,” International Journal of Electronics and Telecommunications, vol. 70, no. 1, pp. 241-246, 2024. [Online]. Available: https://www.researchgate.net/publication/378858398_Students’_view_of_Quantum_Information_Technologies_part_2
  • [2] N. Aslam, H. Zhou, E. K. Urbach, M. J. Turner, R. L. Walsworth, M. D. Lukin, and H. Park, “Quantum sensors for biomedical applications,” Nature Reviews Physics, vol. 5, no. 3, pp. 157-169, 2023.
  • [3] M. Proudfoot, M. W. Woolrich, A. C. Nobre, and M. R. Turner, “Magnetoencephalography,” Practical neurology, vol. 14, no. 5, pp. 336-343, 2014.
  • [4] T. M. Tierney, N. Holmes, S. Mellor, J. D. López, G. Roberts, R. M. Hill, E. Boto, J. Leggett, V. Shah, M. J. Brookes et al., “Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography,” NeuroImage, vol. 199, pp. 598-608, 2019.
  • [5] A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Physics in Medicine & Biology, vol. 62, no. 23, p. 8909, 2017.
  • [6] K. Safar, M. Vandewouw, J. Sato, J. Devasagayam, R. Hill, M. Rea, M. Brookes, and M. Taylor, “The future of meg: Improved taskrelated responses using optically-pumped magnetometers compared to a conventional system,” 2023.
  • [7] X. Ru, K. He, B. Lyu, D. Li, W. Xu, W. Gu, X. Ma, J. Liu, C. Li, T. Li et al., “Multimodal neuroimaging with optically pumped magnetometers: A simultaneous meg-eeg-fnirs acquisition system,” NeuroImage, vol. 259, p. 119420, 2022.
  • [8] A. Narayanan and T. Menneer, “Quantum artificial neural network architectures and components,” Information Sciences, vol. 128, no. 3, pp. 231-255, 2000. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0020025500000554.
  • [9] H. Cao, F. Cao, and D. Wang, “Quantum artificial neural networks with applications,” Information Sciences, vol. 290, pp. 1-6, Jan. 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0020025514008305.
  • [10] J. J. Murphy, Technical analysis of the financial markets. New York Institute of Finance, 1999.
  • [11] M. Obthong, N. Tantisantiwong, W. Jeamwatthanachai, and G. Wills, “A Survey on Machine Learning for Stock Price Prediction: Algorithms and Techniques,” Feb. 2020.
  • [12] G. Liu and W. Ma, “A quantum artificial neural network for stock closing price prediction,” Information Sciences, vol. 598, pp. 75-85, Jun. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0020025522002821.
  • [13] C. Wang, Y. Chen, S. Zhang, and Q. Zhang, “Stock market index prediction using deep Transformer model,” Expert Systems with Applications, vol. 208, p. 118128, Dec. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417422013100.
  • [14] H. Doga, B. Raubenolt, F. Cumbo, J. Joshi, and F. P. DiFilippo, “A perspective on protein structure prediction using quantum computers,” arXiv preprint arXiv:2312.00875, Dec 2023.
  • [15] A. Chagneau, Y. Massaoudi, I. Derbali, and L. Yahiaoui, “Quantum algorithm for bioinformatics to compute the similarity between proteins,” arXiv preprint arXiv:2402.09927, vol. quant-ph, Feb 2024.
  • [16] L. Domingo, M. Djukic, C. Johnson, and F. Borondo, “Binding affinity predictions with hybrid quantum-classical convolutional neural networks,” Scientific Reports, vol. 13, no. 1, p. 12345, 2023. [Online]. Available: https://www.nature.com/articles/s41598-023-45269-y.
  • [17] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, and A. Hirose, “Recent advances in physical reservoir computing: A review,” Neural Networks, vol. 115, pp. 100-123, 2019.
  • [18] J. Dudas, B. Carles, E. Plouet, F. A. Mizrahi, J. Grollier, and D. Marković, “Quantum reservoir computing implementation on coherently coupled quantum oscillators,” npj Quantum Information, vol. 9, p. 64, 2023. [Online]. Available: https://www.nature.com/articles/s41534-023-00734-4 .
  • [19] M. Brooks, “Quantum computers: what are they good for?” Nature, vol. 24, May 2023, spotlight. [Online]. Available: https://www.nature.com/articles/d41586-023-01692-9.
  • [20] J. Kennedy, Swarm Intelligence. Boston, MA: Springer US, 2006, pp. 187-219. [Online]. Available: https://doi.org/10.1007/0-387-27705-6 6.
  • [21] A. Koukam, A. Abbas-Turki, V. Hilaire, and Y. Ruichek, “Towards a quantum modeling approach to reactive agents,” 10 2021.
  • [22] M. Mannone, V. Seidita, and A. Chella, “Categories, quantum computing, and swarm robotics: A case study,” Mathematics, vol. 10, 01 2022.
  • [23] A. Chella, S. Gaglio, M. Mannone, G. Pilato, V. Seidita, F. Vella, and S. Zammuto, “Quantum planning for swarm robotics,” Robotics and Autonomous Systems, vol. 161, p. 104362, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921889023000015.
  • [24] M. Mannone, V. Seidita, and A. Chella, “Modeling and designing a robotic swarm: A quantum computing approach,” Swarm and Evolutionary Computation, vol. 79, p. 101297, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210650223000706.
  • [25] B. Mastej and M. Figat, “Hierarchical distributed cluster-based method for robotic swarms,” 2023.
  • [26] V. G. Ivancevic, “Entangled swarm intelligence: Quantum computation for swarm robotics.” Mathematics in Engineering, Science & Aerospace (MESA), vol. 7, no. 3, 2016.
  • [27] M. Dorigo, G. Theraulaz, and V. Trianni, “Reflections on the future of swarm robotics,” Science Robotics, vol. 5, no. 49, p. eabe4385, 2020. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.abe4385.
  • [28] S. Lem, The Invincible. MIT Press Ltd, 2020.
  • [29] L. Levin, “A tale of one-way functions,” 2003.
  • [30] “Fundamentals of quantum key distribution.” [Online]. Available: https://medium.com/@qcgiitr/fundamentals-of-quantum-key-distribution-bb84-b92-e91-//protocols-e1373b683ead.
  • [31] J. M. T. Lopez, “The no-cloning theorem and its implications in quantum cryptography,” 2022.
  • [32] C. et al., “Security of two quantum cryptography protocols using the same four qubit states,” 2008.
  • [33] A. Ekert, “Quantum cryptography based on bell’s theorem,” Physical Review Letters, 1991.
  • [34] M. Fioranelli, A. Sepehri, D. Flavin, M. G. Roccia, and A. Beesham, “Quantum information teleportation through biological wires, gravitational micro-bio-holes and holographic micro-bio-systems: A hypothesis,” Biochemistry and Biophysics Reports, vol. 26, p. 101011, May 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164018/.
  • [35] Z.-Q. Yin and T. Li, “Bringing quantum mechanics to life: from Schrödinger’s cat to Schrödinger’s microbe,” Contemporary Physics, vol. 58, no. 2, pp. 119-139, Apr. 2017, publisher: Taylor & Francis. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/00107514.2016.1261860.
  • [36] C. Marletto, D. M. Coles, T. Farrow, and V. Vedral, “Entanglement between living bacteria and quantized light witnessed by Rabi splitting,” Journal of Physics Communications, vol. 2, no. 10, p. 101001, Oct. 2018, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/2399-6528/aae224.
  • [37] T. Krisnanda, C. Marletto, V. Vedral, M. Paternostro, and T. Paterek, “Probing quantum features of photosynthetic organisms,” npj Quantum Information, vol. 4, no. 1, p. 60, Nov. 2018, arXiv:1711.06485 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1711.06485.
  • [38] V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nature Photonics, vol. 5, no. 4, p. 222-229, Mar. 2011. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2011.35.
  • [39] S. Alipour, M. Mehboudi, and A. T. Rezakhani, “Quantum metrology in open systems: Dissipative cramérrao bound,” Phys. Rev. Lett., vol. 112, p. 120405, Mar 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.112.120405.
  • [40] K. P. Zetie, S. F. Adams, and R. M. Tocknell, “How does a mach-zehnder interferometer work?” Physics Education, vol. 35, no. 1, p. 46, Jan 2000. [Online]. Available: https://dx.doi.org/10.1088/0031-9120/35/1/308.
  • [41] B. C. Barish, “The laser interferometer gravitational-wave observatory ligo,” Advances in Space Research, vol. 25, no. 6, pp. 1165-1169, 2000, fundamental Physics in Space. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0273117799009801.
  • [42] E. Dudek and A. ˙Zeberkiewicz, “Przyszłość w metrologii kwantowej,” Metrologia i Probiernictwo: Biuletyn Głównego Urzędu Miar, no. 1 (22), p. 74-77, 2019.
  • [43] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26, no. 5, p. 1484-1509, Oct. 1997. [Online]. Available: http://dx.doi.org/10.1137/S0097539795293172.
  • [44] M. E. Beverland, P. Murali, M. Troyer, K. M. Svore, T. Hoefler, V. Kliuchnikov, G. H. Low, M. Soeken, A. Sundaram, and A. Vaschillo, “Assessing requirements to scale to practical quantum advantage,” 2022.
  • [45] S. Ali, T. Yue, and R. Abreu, “When software engineering meets quantum computing,” Commun. ACM, vol. 65, no. 4, p. 84-88, Mar 2022. [Online]. Available: https://doi.org/10.1145/3512340.
  • [46] M. Kaiiali, S. Sezer, and A. Khalid, “Cloud computing in the quantum era,” in 2019 IEEE Conference on Communications and Network Security (CNS), 2019, pp. 1-4.
  • [47] D. Vietz, J. Barzen, F. Leymann, B. Weder, and V. Yussupov, “An exploratory study on the challenges of engineering quantum applications in the cloud,” in Q-SET@QCE, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:244135213.
  • [48] F. Leymann and J. Barzen, “Hybrid quantum applications need two orchestrations in superposition: A software architecture perspective,” 2021.
  • [49] J. Moazzam, R. Pawar, and M. D. Khare, “Evolution and advancement of quantum computing in the era of networking and cryptography,” in 2023 International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT), 2023, pp. 817-821.
  • [50] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” in 2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE, Oct. 2009. [Online]. Available: http://dx.doi.org/10.1109/FOCS.2009.36.
  • [51] T. Trochatos, C. Xu, S. Deshpande, Y. Lu, Y. Ding, and J. Szefer, “Hardware architecture for a quantum computer trusted execution environment,” 08 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0307fab1-919f-4781-9627-e95014a78dfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.