Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A fan with a cycloidal rotor (CRF) is a promising design for application in HVAC (heat, ventilation and air conditioning) systems. Despite the widespread use of the CRF design as a form of propulsion, there are practically no scientific publications examining the possibility of using it as the HVAC fan. The choice of the cycloidal rotor facilitates the operating procedure and widens the range of operating conditions. The paper focuses on the use of the CRF in HVAC, especially as a blowing machine integrated with rectangular ducts, presenting, and discussing the search for the most efficient numerical model. The way of discretizing the computational domain, the turbulence models and the time integration method were tested. A four-blade open rotor fan with a cycloidal impeller was used both in the numerical and in the experimental model. The 2D and 3D CRF models created in the Ansys CFX package were adopted. After a mesh-independence study, different turbulence models were tested for the selected mesh. In the case of the 2D model, various turbulence models such as the SST and the RNG k-ε options were tested and compared with each other. The computational fluid dynamics simulations were compared with in-house experimental results of the velocity field measurements performed by means of laser Doppler anemometry and thermoanemometry. It turned out that the considered numerical models did not reflect the experimental measurements quantitatively. This may be due to the small differences in the shapes of the cycloids of the rotor blades in the numerical model and in real geometry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
3--15
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
- Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
- Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
- Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
- [1] Morandini M., Xisto C., Pascoa J., Quaranta G., Gagnon L., Masarati P.: Aeroelastic analysis of a cycloidal rotor under various operating conditions. J. Aircraft. 55(2018), 4, 1675–1688.
- [2] Muscarello V., Masarati P., Quaranta G., Georges T., Gomand J., Malburet F., Marilena P.: Instability mechanism of roll/lateral biodynamic rotorcraft–pilot couplings. J. Am. Helicopter Soc. 63(2018), 1–13.
- [3] Xisto C. Leger J., Pascoa J., Gagnon L., Masarati P., Angeli D., Dumas A.: Parametric analysis of a large-scale cycloidal rotor in hovering conditions. J. Aerospace Eng. 30(2017), 1.
- [4] Xisto C., Pascoa J., Abdollahzadeh M., Leger J., Masarati P., Gagnon L., Schwaiger M., Wills D.: PECyT – plasma enhanced cycloidal thruster. In: Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. July 28–30, 2014, Cleveland.
- [5] Andrisani A., Angeli D., Dumas A.: Optimal pitching schedules for a cycloidal rotor in hovering. Aircr. Eng. Aerosp. Tec. 88(2016), 5.
- [6] Xisto C., Pascoa J., Leger J.: Cycloidal rotor propulsion system with plasma enhanced aerodynamics. In: Proc. ASME 2014 Int.l Mechanical Engineering Congress and Exposition; Montreal, Nov. 14–20, 2014; V001T01A005.
- [7] Xisto C., Pascoa J., Trancossi M.: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high solidity VAWT. J. Sol. Energy Eng. 138(2016), 031006.
- [8] Benedict M.: Fundamental understanding of cycloidal-rotor concept for micro air vehicle applications. PhD thesis, Univ. Maryland, College Park, 2010.
- [9] Benedict M., Ramasamy M., Chopra I.: Improving the aerodynamic performance of micro-air-vehicle-scale cycloidal rotor: An experimental approach. J. Aircraft 47(20104), 1117–1125.
- [10] Heimerl J., Halder A., Benedict M.: Experimental and computational investigation of a UAV-scale cycloidal rotor in forward flight. In: Proc. The Vertical Flight Society’s 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10–14, 2021.
- [11] Halder A., Benedict M.: Nonlinear aeroelastic coupled trim analysis of a twin cyclocopter in forward flight. AIAA J., 59, 2021, 305–319.
- [12] Lee B., Saj V., Benedict M., Kalathil D.: A Vision-Based Control Method for Autonomous Landing Of Vertical Flight Aircraft On A Moving Platform Without Using GPS. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
- [13] Denton H., Benedict M., Kang H., Hrishikeshavan V.: Design, development and flight testing of a gun-launched rotary-wing micro air vehicle. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
- [14] Halder A., Benedict M.: Understanding upward scalability of cycloidal rotors for large-scale UAS applications. In: Proc. Aeromechanics for Advanced Vertical Flight Technical Meeting 2020, Transformative Vertical Flight 2020, San Jose, 21–23 Jan. 2020, 311–330.
- [15] Runco C., Benedict M.: Flight dynamics model identification of a meso-scale twin-cyclocopter in hover. Paper presented at the 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10-14, 2021.
- [16] Runco C., Coleman D., Benedict M.: Design and development of a 30 g cyclocopter. J. Am. Helicopter Soc. 64(2019), 1.
- [17] Coleman D., Halder A., Saemi F., Runco C., Denton H., Lee B., Benedict M.: Development of “Aria”, a compact, ultra-quiet personal electric helicopter. In: Proc. 77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021: The Future of Vertical Flight, Virtual, May 10–14, 2021.
- [18] Koschorrek P., Siebert Ch., Haghani A., Jeinsch T.: Dynamic positioning with active roll reduction using Voith Schneider propeller. IFAC-PapersOnLine, 48(2015), 16, 178–183.
- [19] Schubert A., Koschorrek P., Kurowski M., Lampe B., Jeinsch T.: Roll damping using Voith Schneider propeller a repetitive control approach. IFACPapersOnLine 49(2016), 23, 557–561.
- [20] Hahn T., Koschorrek P., Jeinsch T.: Parameter estimation of wave-induced oscillatory ship motion for wave filtering in dynamic positioning. IFAC-PapersOnLine 51(2018), 29, 183–188.
- [21] Hashem I., Mohamed M.H.: Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142(2018), 531–545
- [22] Siegel S.: Numerical benchmarking study of a cycloidal wave energy converter. Renew. Energ. 134(2019), 390–405.
- [23] Siegel S.: Wave radiation of a cycloidal wave energy converter. Appl. Ocean Res. 49(2015), 9–19.
- [24] Bianchini A., Balduzzi F., Rainbird J., Peiro J., Graham M., Ferrara G.: An experimental and numerical assessment of airfoil polars for use in Darrieus wind turbines – Part I: Flow curvature effects. J. Eng. Gas Turb. Power 138(2016), 032602-1.
- [25] Dykas S., Majkut M., Smołka K., Strozik M., Chmielniak T., Stasko T.: Numerical and experimental investigation of the fan with cycloidal rotor. Mech. Mechanical Eng. 22(2018), 2, 447–454.
- [26] Stasko T., Dykas S., Majkut M., Smołka K.: An attempt to evaluate the cycloidal rotor fan performance, Open J. Fluid Dyn. 9(2019), 292–30.
- [27] Shyy W., Lian Y., Tang J., Viieru D., Liu H.: Aerodynamics of Low Reynolds Flyers. Cambridge Univ. Press, 2008.
- [28] Ansys Fluent User Guide 2020 R1. Ansys, Canonsburg 2020.
- [29] Shrestha E., Yeo D., Benedict M., Chopra I.: Development of a meso-scale cycloidal-rotor aircraft for micro air vehicle application. Int. J. Micro Air Veh. 9(2017), 3.
- [30] Augusto J., Monteiro L., Pascoa J., Xisto C.: Aerodynamic optimization of cyclorotors. Aircraft Eng. Aerosp. Tec. 88(2016), 2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0300ebbb-2528-4ac1-b007-8a638d883517