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Abstract 
An important aspects of learning are the theoretical elements of mathematics and the methods of obtaining the 

function or designbecause it allows for further development of the issues and the ability to apply this problem 

in practice. The Fourier transform is very useful in science and technology. The article shows how and in 

what structures is possible to use the Fourier transform in the set Rn. The article describes the project of 

compact-open topology, which is essential to the construction of the Haar measure and integral. It was also 

described the concept of the nature of a locally compact topological group, because a group of characters is 

also essential to the construction of the Fourier transform and inverse Fourier transform. It has been proven 

that a group of characters is a locally compact topological group, which allows the introduction of the Haar 

measure. It has given an example application of the theory of Haar integral when calculating the Fourier 

transform for some of the electronics. 

 

 

Introduction 

The aim of this study is to provide the mathe-

matical basis for the construction of the Fourier 

transform. The Fourier transform has very wide 

applications in science. It appeared for the first time 

in the discussion of the phenomenon of heat flow, 

now appears in many practical applications of sci-

ence and technology. The Fourier transform is a 

basic tool for harmonic analysis and the theory of 

analysis and signal processing. From the point of 

view of the theory the Fourier transform is a math-

ematical tool that occur when one analyses the 

L2(G) (with the square integrable functions on 

a group of alternating G). In applications the Fouri-

er transform is commonly used when G = R 

(a group of real numbers with addition), G = [0, 2] 

(group of real numbers from the interval [0, 2], 

operation is addition modulo 2) and G = Zn (group 

of integers {0, 1, ..., n – 1} with addition modulo 

n). It turns out that the integral design of measure-

ment which is used in the transform is based on 

a complex mathematics. The Haar measure is a 

standard tool of harmonic analysis on locally com-

pact groups. In this article we considered the com-

mutative group, so just shows the existence of 

measure is not paying attention to it, whether it is 

left side or right handed. It is assumed that the 

reader are familiar with the theory and properties of 

topological spaces, group theory, basic algebra, 

theory of integrals and measures, especially the 

Lebesgue integral. 

The compact-open topology 

This chapter provides the overall topology of the 

knowledge needed to deliberations that take place 

later in the article.  

Let X, Y be topological spaces and let  

C(X, Y) = {f: X  Y; f is a continuous function} (1) 

For C(X, Y) is defined a compact-open topology 

by giving subbase. Suppose, that K  X be a com-

pact set and U  Y be an open set.  

Let: 

       UKfYXCfUKP  ;,,  (2) 

Now we give two definitions related to topolog-

ical groups which are needed to understand the next 

chapter: 
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Definition 1. Compact-open topology on the set 

C(X, Y) is called the topology generated by the base 

consisting of all sets P(Ki, Ui) where Ki are com-

pact, and Ui are open for i = 1,2,...k [1]. 

Definition 2. A topological space X is called lo-

cally compact if for every x  X there exists 

a neighborhood U, that U  is a compact set [2]. 

There are also two lemmas concerning that  

represent certain properties of locally compact  

topological spaces: 

Lemma 1. For each pair X, Z topological  

spaces and locally compact topological space Y 

mapping E: Z
 Y

  X
 Y
  Z

 X
 is a continuous, if  

the spaces of continuous functions we consider are 

the compact-open topology [1]. 

Lemma 2. Let X, Y, Z, T be topological spaces 

and let Y
X
  is the set of all mappings f such that 

f: X  Y. Continuous mappings g: Y  T, h: X  Z 

define the mappings : Y
 X

  T
 X

, : Y
 Z

  Y
 X

 by 

setting [1]: 

 
 

  Z

X

YfhffΨ

Yffgf





for

for




 (3) 

Is given a very important theorem on Hausdorff 

space, which are used to prove Theorem 4 in the 

next chapter: 

Theorem 1. If Y is a Hausdorff space, then 

C(X, Y) is also a Hausdorff space [2]. 

We have thus obtained the promised reduction: 

Lemma 3. For any topological spaces X, Y 

a compact set K  X and a closed set U  Y, the set 

P(K, U) is closed in the space Y
 X

  with the com-

pact-open topology [1]. 

Characters of locally compact topological 
groups 

This section focuses on the characters of the 

group topological (R
n
,+,T), where T is the natural 

topology of Euclidean space R
n
. Now we give defi-

nitions of the topological group and local compact-

ness and then further properties of locally compact 

topological groups.  

Definition 3. The structure of (V,,T) is called 

a topological group if [3]: 

(a) (V,) is a group; 

(b) (V, T) is a Hausdorff topological space; 

(c) the action  of a group and the assignment in-

verse action are continuous.  

Definition 4. Topological group (G,,T) is lo-

cally campact if topological space (G, T) is locally 

compact [2]. 

Definition 5. Let (G,,T) be locally compact 

topological group. The character of this group is 

called any continuous homomorphism h: G  S
1
, 

where S
1
 is the unit circle [3]. 

In further considerations of the S
1
, subspace to-

pology will be considered with the natural topology 

(generated by the Euclidean metric) in R
2
. 

It takes place the following theorem: 

Theorem 2. There is a character for a group of 

topological (R
n
,+,T). 

Proof. We consider functions f: R
n
  R, g: R  S

1
, 

defined by setting: 

      iyn

i in eygxxxf  
,,...,

11  (4) 

There is a clear that the functions f and g are 

continuous. It is not difficult to note that these two 

functions are homomorphisms. 

Let us now take a new function h: R
n
  S

1
 given 

formula: 

        
n
i ixi

nn exxfgxxh 1,...,,..., 11   (5) 

Submission of continuous functions is a contin-

uous function, and so the function h is continuous. 

Similarly, the submission of two homomorphisms 

is a homomorphism, so h is a homomorphism, 

which had to be demonstrated. ■ 

It is easy to see that: 

Remark 1. In place of the function f in the proof 

of previous theorem one can put any additive and 

continuous function. 

Remark 2. In place of the function h in the 

proof of the previous theorem one can put any form 

of an exponential function or function which has 

values in any circle in R
2
 space. 

We denote the set of all characters of a topologi-

cal group (R
n
,+,T) by F. Now it will be presented 

and proved very important theorem about charac-

ters of a topological group (R
n
,+,T): 

Theorem 3. The set F has a group structure. 

Proof. Let j, k, l  F and x, y  R
n
. In the set F  it 

can be specify a new action :F  F  F, such that 

j  k(x) = j(x)k(x). Action  is correctly specified. 

Based on the alternation of the group S
1
 

 

       
               
       ykjxkj

ykyjxkxjykxkyjxj

yxkyxjyxkj







 (6) 

So j  k is a continuous homomorphism. An  

inverse to the nature of l  can be defined as follows 

l
–1

(x) = (l(x))
–1

. 

This element is correctly specified, because 

 
        

   ylxl

ylxlyxlyxl

11

1111








 (7) 
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so l
 –1

 is a continuous homomorphism. 

It is easy to check that the neutral element in the 

set F is the nature of F0 = 1. ■ 

It has been shown that F is an Abelian group 

(because S
1
 is an Abelian group) and it is called 

a group of characters. 

From previous lemmas and theorem 1 we have 

the most important conclusion in this chapter: 

Theorem 4. Let F be the set of characters of 

topological groups (R
n
,+,T). In the set C((R

n
, S

1
)) is 

determined the compact-open topology. 

If in the set F  C(R
n
, S

1
) we introduce the sub-

space topology T', (F,,T') becomes a locally com-

pact topological group. 

Proof. According to the assumptions and Lemma 1 

action : F  F  F is a continuous function. From 

Lemma 2 it follows immediately that the operation 

assignment inverse in a topological group (F,,T') 

is a continuous function. 

On the basis of Theorem 1 (F, T') is also 

a Hausdorff space, because S
1
 is a Hausdorff space. 

It has been proven that (F,,T') is a topological 

group. It must be demonstrated even local com-

pactness of the group. 

Let K  R
n
 be a compact set, U  S

1
 be an open 

set. It is obvious that P (K, U)  P(K,U ). From 

Lemma 3 we know that P(K,U ) is a closed set. 

By definition compact-open topology is known  

that we can choose any finite open sets to cover  

P(K,U ), so the set P(K,U ) is compact, qed. ■ 

The Fourier transform of a topological 
group (Rn, +, T) 

To define the Fourier transform, it must be to 

provide a measure of structure in the set R
n
. Let 

A  R
n
 be a compact set and   Int(A).  The exist-

ence of such a set follows from the local compact-

ness of the set R
n
. Let U  R

n
 be an open set  

and   U. Then for any compact set C  R
n
 it  

can be choosen of each cover open sets to choose 

finite subcover such that:  n
i i UxC 1  , where 

xi  R
n
. Denote by: 

   n
i ixx UxCnUC

n 1,...,1
;min:   V  (8) 

Let U : R
n
  Q will be defined by: 

  
UA

UC
CU

:

:
  (9) 

Function U satisfies the conditions of measure, 

and the only accurate to a multiplicative constant 

positive. Function U will be called the Haar meas-

ure. Using a standard structure of the Legesque 

integral, on the basis of the Haar measure, it can be 

built the integral as follows: 

     nR
xxf d  (10) 

which we call the Haar integral (  is a Haar meas-

ure in R
n
). 

Let now 

    n

R

n

n

RxxxfRRff

RLf

n




 ,d,:,

)(1


. 

Then the Fourier transform of the function f, 

RFf :
~

, is defined as: 

         FjRxxxjxfjf n

Rn
 


,,d

~ 1
  (11) 

The inverse transform g


: R
n
  R to the func-

tion g is defined by: 

         FjRxjmxjjgxg n

F
  ,,d


 (12) 

where m is a Haar mesure in F (in a compact – 

open topology). The next theorem describe the 

property of an inversion of the Fourier transform: 

Theorem 5. (Fourier transform inversion for-

mula). For each of the Haar measure on R
n
 there 

exists a unique Haar measure on F such that for 

each function f  the continued and integrable on R
n
, 

which transform  nRLf 1

~
  occurs [3] 

 
        F

jmxjjfxf d
~

 (13) 

where x  R
n
. 

The Haar measure can be restricted to Borel sets 

in R
n
 that are measurable in the sense of Lebesque. 

Then the Haar measure is equal to the extent 

Lebesque measure. For any continuous function 

f: R  R, the Lebesque integral is equal to the Rie-

mann integral (if the Riemann integral exists) and 

then the Fourier transform of a function f has the 

form: 

      
 

Rxxxjxfjf
ba

 


,d
~

,

1
 (14) 

However, when the Riemann integral does not 

exist, it should be to use the Lebesque integral or 

the Haar integral. From the properties of Haar inte-

grals and characters of the R
n
 follows next corol-

lary: 

Corollary 1. Let f  L1(R
n
), j,

 
k  F. Then 

       

     ;d

d
~

)(
1










n

n

R

R

xxjxf

xxjxfjfi




 

     
nR

xxfkjfii d
~

)( ; 
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       nR in Fjxxfjjjfiii .,d...
~

)( 21   

Proof. Item (i) follows from properties of complex 

numbers located on the unit circle. Item (ii) can be 

demonstrated as follows: 

 

         

       

       

       























n

n

n

n

R

R

R

R

xxkxjxf

xxkjxf

xxkjxf

xxkjxfkjf









d

d

d

d
~

11

1

1

1

 

so 

      
nR

xxfkjf d
~

. 

The proof of item (iii) is analogous to the proof 

of item (ii). ■ 

Based on complex numbers properties it can be 

demonstrated a transformation, allowing to come to 

the Fourier transform for some function which have 

a set of values in a circle with the radius r: 

Corollary 2. Let h : R
n
  R

2
 be a continuous 

function, which has values closed in a circle with 

the radius r and with center s. The number s can be 

written as a complex number. Then the formula: 

           


nn RR
xxf

r

s
xxhxf

r
 dd

1 1
 (15) 

is a Fourier transform of a function f, where 

f: R
n
 R, f  L1(R

n
). 

Proof. It can be apply the transformation k(x) = 

(h(x) – s)/r, and then the function k will be 

a character of a topological group R
n
. 

Using Haar integral to calculate Fourier 
Transform 

Let a chip that performs the function f from two 

different and independent signals f1(x) and f2(x). 

At the output the function f(x, y) has the form: 

  
   

   










22

222

1,0,forctg

\1,0,forsin
,

Qyxyx

Qyxyx
yxf (16) 

where Q  s the set of rational numbers. Let a char-

acter of a set R
2
 is the formula j(x, y) = e

i(x + y)
. The 

function f is not integrable in the sense of Riemann. 

To calculate the Fourier transform for such a sys-

tem, it must be to calculate the Haar integral.  

Because function f is defined on the set R
2
, the Haar 

measure equals the Lebesque measure, then the 

Haar integral equals the Lebesque integral and 

          
 




2
1,0

1
d,,

~
xyxjyxfLjf   (17) 

The function f is not integrable in the sense of  

Riemann, so be sure to get out of the Lebesque 

integral. Then there is the following equality 

 

         
 

        
 

       
 

      

 

       
 

       
 

      

 















































2

22

22

2

22

22

2

1,0

2

1,0

1,0

1,0

2

1,0

\1,0

2

1,0

1

ddsin

dctg

dctg

ddsin

dctg

dsin

d,,
~

yxeyxR

xeyxL

xeyxL

yxeyxR

xeyxL

xeyxL

xyxjyxfLjf

yxi

Q

yxi

Q

yxi

yxi

Q

yxi

Q

yxi











 

After the transformation we come to the Rie-

mann integral, which is simple to calculate. How-

ever, there are continuous functions in R
n
, which is 

not integrable in the sense of Riemann, but these 

functions are integrate in the sense of Lebesque.  

Conclusions 

Analyzing the content of the article it is easy to 

see that the Fourier transform can be used for func-

tions that field is a subset of R
n
. It can be notice that 

due to the structure of Fourier transform on locally 

compact topological groups, in a simple way, we 

can determine the inverse transform of the Fourier 

transform of the function. A function can have an 

infinite number of transforms, as it is possible the 

use many characters for any function.  

By using the Haar integral, it can be calculate 

Fourier transform for every function, which is de-

fined on any subset of R
n
. Because not every func-

tion is integrable in the sense of Riemann,  

construction of the Fourier transform with using 

a group of characters on R
n
 and locally compactness 

R
n
 set is a powerful tool.  
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