PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Prepolymer Structure of Glycidyl Azide Polymer (GAP) on Binder Properties – Some Theoretical Considerations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glycidyl azide polymer (GAP) is a promising energetic binder for solid propellants, but it suffers from poor mechanical properties compared to hydroxyl-terminated polybutadiene (HTPB). This paper reviews the main factors affecting the mechanical properties of GAP-based binders, such as molecular weight and functionality, and discusses some possible strategies on how it could be improved. The equation of Carother is used for the theoretical consideration of the functionality of the GAP prepolymer.
Rocznik
Strony
53--67
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Fraunhofer Institute for Chemical Technology ICT, Joseph-von-Fraunhofer Str. 7, 76327 Pfinztal, Germany
  • Fraunhofer Institute for Chemical Technology ICT, Joseph-von-Fraunhofer Str. 7, 76327 Pfinztal, Germany
Bibliografia
  • [1] Vandenberg, E.J. Polyethers Containing Azidomethyl Side Chains. Patent US 3645917, 1972.
  • [2] Frankel, M.B.; Grant, I.R.; Flanagan, J.E. Historical Development of Glycidyl Azide Polymer. J. Propuls. Power 1992, 8: 560-563; https://doi.org/10.2514/3.23514.
  • [3] Frankel, M.B.; Flanagan J.E. Energetic Hydroxy-terminated Azido Polymer. Patent US 4268450, 1981.
  • [4] Stacer, R.G.; Husband, D.M. Molecular Structure of the Ideal Solid Propellant Binder. Propellants Explos. Pyrotech. 1991, 16(4): 167-176; https://doi.org/10.1002/prep.19910160404.
  • [5] Lessard, P. Development of Minimum Smoke Propellant Based on GAP and AN. AGARD, CP-511, 1991.
  • [6] Davenas, A. Development of Modern Solid Propellants. J. Propuls. Power 2003, 19(6): 1108-1128; https://doi.org/10.2514/2.6947.
  • [7] Talawar, M.B.; Sivabalan, R.; Anniyappan, M.; Gore, G.M. Asthana, S.N.; Gandhe, B.R. Emerging Trends in Advanced High Energy Materials. Combust. Explos. Shock Waves 2007, 43(1): 62-72; https://doi.org/10.1007/s10573-007-0010-9.
  • [8] Mirin, F.; Golfier, M.; Perut, C. New Rocket Propellants for Defence Application - Smokeless and Aluminized GAP-based Propellants. Proc. 39th Int. Annu. Conf. ICT, Karlsruhe, Germany, 2008, paper V014.
  • [9] Hagen, T.H.; Jensen, T.L.; Unneberg, E.; Stenstrøm, Y.H.; Kristensen, T.E. Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate-Free, Synchronous Dual, and Sequential Dual Curing Systems. Propellants Explos. Pyrotech. 2015, 40: 275-284; DOI: 10.1002/prep.201400146.
  • [10] Jensen, T.L.; Unneberg, E.; Kristensen, T.E. Smokeless GAP-RDX Composite Rocket Propellants Containing Diaminodinitroethylene (FOX-7). Propellants Explos. Pyrotech. 2017, 42: 381-385; https://doi.org/10.1002/prep.201600278.
  • [11] Landsem, E.; Jensen, T.L.; Kristensen, T.E.; Hansen, F.K.; Benneche, T.; Unneberg, E. Isocyanate-Free and Dual Curing of Smokeless Composite Rocket Propellants. Propellants Explos. Pyrotech. 2013, 38: 75-86; https://doi.org/10.1002/prep.201200108.
  • [12] Deschner, T.; Løkke, E.A. Insensitive Minimum Smoke Propellants for Tactical Missiles. New Energetic Workshop (NEW) 2018, Stockholm, Sweden, 2018.
  • [13] Gettwert, V.; Fischer, S.; Menke, K. Aluminised ADN/GAP Propellants –Formulation and Properties. Proc. 44th Int. Annu. Conf. Fraunhofer, Karlsruhe, Germany, 2013, paper P57.
  • [14] Hagen, T.H.; Jensen, T.J.; Unneberg, E.; Stenstrøm, Y.H.; Kristensen, T.E. Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyante-free, Synchronous Dual and Sequential Dual Curing Systems. Propellants Explos. Pyrotech. 2015, 40: 275-284; https://doi.org/10.1002/prep.201400146.
  • [15] Keicher, T.; Kuglstatter, W.; Eisele, S.; Wetzel, T.; Krause, H. Isocyanate-Free Curing of Glycidyl Azide Polymer (GAP) with Bis-Propargyl-Succinate (II). Propellants Explos. Pyrotech. 2009, 34: 210-217; https://doi.org/10.1002/prep.200900001.
  • [16] Reshmi, S.; Vijayalakshmi, K.P.; Sadhana, R.; George, B.K.; Arunanc, E.; Reghunadhan Naira, C.P. Inter Molecular Azide–Diisocyanate Coupling: New Insights for Energetic Solid Propellants. RSC Adv. 2015, 5: 50478-50482; https://doi.org/10.1039/C5RA03584H.
  • [17] Barbieri, U.; Polacco, G.; Keicher, T.; Massimi, R. Preliminary Characterization of Propellants Based on p(GA/BAMO) and pAMMO Binders. Propellants Explos. Pyrotech. 2009, 34: 427-435; https://doi.org/10.1002/prep.200800040.
  • [18] Keicher, T. unpublished work.
  • [19] Finck, B.; Graindorge, H. New Molecules for High Energy Materials. Proc. 27th Int. Annu. Conf. ICT, Karlsruhe, Germany, 1996, paper 23-1.
  • [20] Product-Catalogue. Specification Eurenco, https://eurenco.com/wp-content/uploads/2021/04/EURENCO-Product-Catalogue.pdf [accessed on June 12, 2023].
  • [21] Datasheet 3M GAP-5527 Polyol. https://www.machichemicals.com/pdf/3M_GAP5527.pdf [accessed on June 12, 2023].
  • [22] Min, B.S.; Ko, S.W. Characterization of Segmented Block Copolyurethane Network Based on Glycidyl Azide Polymer and Polycaprolactone. Macromol. Res. 2007, 15(3): 225-333; https://doi.org/10.1007/BF03218780.
  • [23] Jarosz, T.; Stolarczyk, A.; Wawrzkiewicz-Jalowiecka, A.; Pawlus K.; Miszczyszyn, K. Glycidyl Azide Polymer and its Derivatives-Versatile Binders for Explosives and Pyrotechnics: Tutorial Review of Recent Progress. Molecules 2019; 24(24): paper 4475; https://doi.org/10.3390/molecules24244475.
  • [24] Ma, S.; Li, Y.; Li, Y.; Li, G.; Luo, Y. Research on the Mechanical Properties and Curing Networks of Energetic GAP/TDI Binders. Cent. Eur. J. Energ. Mater. 2017, 14(3): 708-725; https://doi.org/10.22211/cejem/69575.
  • [25] Li, Y.; Ma, S.; Deng, J.; Luo, Y. Study on Bulk Preparation and Properties of Glycidyl Azide Polymer with Hydroxyl-terminated Polyether Elastomers Obtained Through Step-wise Curing Process. Colloid Polym. Sci. 2017, 295: 637-646; https://doi.org/10.1007/s00396-017-4050-8.
  • [26] Wang, Y.; Wang, Y.; Song, X.; An, C.; Li, F. Rheological Impact of Particle Size Gradation on GAP Propellant Slurries. ACS Omega 2022, 7: 38536-38542; https://doi.org/10.1021/acsomega.2c03872.
  • [27] Ou, Y.; Zhao, Q.; Zhang, W.; Zhang, B.; Yan, S.; Jiao, Q. Fabrication of Glycidyl Azide Polymer-Hydroxyl Terminated Polyether semi-Interpenetrating Network via Synchronous Dual Curing System. Mater. Lett. 2019, 237: 152-153; https://doi.org/10.1016/j.matlet.2018.11.093.
  • [28] Hu, C.; Gua, X.; Jing, Y.; Chen, J.; Zhang, C.; Huang, J. Structure and Mechanical Properties of Crosslinked Glycidyl Azide Polymers via Click Chemistry as Potential Binder of Solid Propellant. J. Appl. Polym. Sci. 2014, paper 40636; https://doi.org/10.1002/APP.40636.
  • [29] Tanver, A.; Huang, M.H.; Luo, Y.; Khalid, S.; Hussain, T. Energetic Interpenetrating Polymer Network Based on Orthogonal Azido–Alkyne Click and Polyurethane for Potential Solid Propellant. RSC Adv. 2015, 5: paper 64478; https://doi.org/10.1039/c5ra10467j.
  • [30] Reshimi, S.; Hemanth, H.; Gayathri, S.; Nair, C.P.R. Polyether Triazoles: An Effective Binder for ‘Green’ Gas Generator Solid Propellants. Polym. 2016, 92: 201-209; https://doi.org/10.1016/j.polymer.2016.03.006.
  • [31] Chmielarek, M.; Cieślak, K.; Maksimowski, P. The Study on the Crosslinking and Curing of poly(Glycidyl Azide) (GAP). Proc. 24th Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2022, pp. 354-361.
  • [32] Grinevich, T.V.; Solov’yanov, A.A.; Vinogradov, D.B.; Bulatov, P.V.; Kuznetsov, G.P.; Assovskii, I.G.; Berlin, A.A.; Tartakovskii, V.A. Oligo(Glycidyl Azides): New Approaches to Synthesis and Properties. Doklady Chemistry 2014, 454(2): 39-41; https://doi.org/10.1134/S0012500814020062.
  • [33] Grinevich, T.V.; Vinogradov, D.B.; Solov’yanov, A.A.; Bulatov, P.V.; Berlin, A.A.; Tartakovskii, V.A. Method of Producing Oligoglycidyl Azides. Patent RU 2529188C1, 2014.
  • [34] Ang, H.G.; Pisharath, S. Energetic Polymers Binder and Plasticizer for Enhancing Performance. Viley-VCH, Weinheim, 2000, pp. 21-22; ISBN 978-3-527-33155-0.
  • [35] Provatas, A. Energetic Polymers and Plasticisers for Explosives Formulations – A Review of Recent Advances. Report DSTO-TR-0966, 2000.
  • [36] Morin, F.; Golfier, M.; Nguyen, C. New Solid Propellants for Tactical Missile Propulsion Smokeless and Aluminized GAP-Based Propellants. Proc. RTO-MPAVT-208, 2012, pp. 1-14.
  • [37] Analysis of Alternatives & Socio-Economic Analysis. https://echa.europa.eu/documents/10162/a02face3-9c29-4940-95ec-391d7ae2453f [accessed on June 12, 2023].
  • [38] Sartomer Product Bulletin Hydroxyl Terminated Polybutadiene Resins and Derivatives. https://www.crayvalley.com/docs/technical-paper/hydroxylterminated-polybutadiene-resins-and-derivatives.pdf [accessed on June 12, 2023].
  • [39] Oberth, A.E. Functionality Determination of Hydroxyl-Terminated Prepolymers. AIAA 1978, 16(9): 919-924; https://doi.org/10.2514/3.60986.
  • [40] Flory, P.J. Principle of Polymer Chemistry. Cornwell University Press, Ithaca, US-NY, 1953.
  • [41] Oberth, A.E.; Bruenner, R.S. Polyurethane-Based Propellants. Propellants Manufacture, Hazards, and Testing. In: Advances in Chemistry. Vol. 88, ACS Publication, 1969, pp. 84-121; https://doi.org/10.1021/ba-1969-0088.ch005.
  • [42] Johannessen, B. Low Polydispersity Glycidyl Azide Polymer. Patent US 5741997, 1998.
  • [43] Mohan, Y.M.; Raju, M.P.; Raju, K.M. Synthesis, Spectral and DSC Analysis of Glycidyl Azide Polymers Containing Different Initiating Diol Units. J. Appl. Polym. Sci. 2004, 93: 2157-2163; https://doi.org/10.1002/app.20682.
  • [44] Alkaabi, K. The Synthesis, Chemical and Physical Characterisation of Selected Energetic Binder Systems. Doctoral Dissertation, Stellenbosch University, South Africa, 2009; https://scholar.sun.ac.za/server/api/core/bitstreams/d5904f95-3ae7-47d2-af40-3b4b9ed61787/content [accessed on June 12, 2023].
  • [45] Reshmi, S. Investigations on Azide Functional Polymers as Binders for Solid Propellants. PhD, Indian Institute of Science, 2014; https://ipc.iisc.ac.in/~ea/Reshmi.pdf [accessed on June 12, 2023].
  • [46] Ampleman, G. Glycidyl Azide Polymer. Patent US 5256804, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02f33da4-4a54-4114-80d7-870043f096d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.