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Abstract  
In this article, the problem of the free vibration behavior of a cantilever Euler-Bernoulli beam with various 

non-classical boundary conditions, such as rotational, translational spring, and attached mass is investigated. 
For describing the differential equation of the system. An analytical procedure is proposed firstly, and a 
numerical method based on the differential transform method DTM is developed in order to validate the 
obtained results. A parametric study for various degenerate cases is presented with the aim to analyze the 
influence of rotational stiffness, vertical stiffness, and mass ratio on the free vibration response of the beam, 
particularly on its modal characteristics. The results show that the non-classical boundary conditions 
significantly affect the natural frequency and mode shapes of the studied beam system in comparison to the 
case of a classical boundary conditions such as Simply supported, clamped-clamped, etc. The comparison 
between the obtained results based on the proposed analytical solution and numerical scheme, and those 
available in the literature shows an excellent agreement. 
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Nomenclature 
KT: Vertical spring stiffness; 
KR: Rotational spring stiffness; 
M:  Masse attached;  
L:   Length of beam;  
E:   Young’s modulus of materials; 
I:    Area moment of inertia;  
ρ:   Beam density;  
t:   Time; 
A:   Cross-sectional area; 
x:   Spatial coordinate; 
ZW: Impedances to shear;  
Zθ:  Impedances to bending; 
ax:  Dimensionless translational support stiffness; 
aθ:   Dimensionless rotational support stiffness; 
y (x, t) :  Transverse displacement; 
R:  Mass ration; 
βi :   Separation constant; 
ω:  Circular frequency; 
Fw: Shear; 
𝑀ఏ: Bending moment. 
 
1. INTRODUCTION 
 

Recently, a new class of boundary conditions 
known as non-classical mechanics systems has drawn 
considerable attention in the field of engineering, these 
systems can be used to produce excellent and 
optimization structural elements in various engineering 
structures and technologies such as robotic structure, 
aircraft, vehicles, building, and bridges. The structural 
response of beams with  linear  and  non-linear  elastic 

 boundary conditions has been a topic of many 
investigations. 
Paupitz et al. [1] proposed a new method for 
calculating the natural frequencies and mode 
shape by using the terms of dynamic stiffness 
presented by boundary condition, this method 
is valid for any linear boundary conditions. 
Raimondo Luciano et al. [2] studied the free 
flexural vibrations of nanobeams constrained 
by non-rigid supports, modelled by transversal 
and rotational springs. Laila chalah et al. [3] 
using the finite element method (FEM) for 
determining the transverse free vibration of a 
cantilever beam with torsional and 
translational springs attached at the end, 
identifying the immediate effects of the elastic 
restraints on the dynamic behavior of the 
system. Ding et al. [4] studied the free 
vibration of an axially moving beam supported 
by torsional and vertical springs at both ends. 
the critical speed of the axially moving beam 
does not change with the  vertical spring 
stiffness. Sayed Mojtaba [5] analysed the free 
vibration response of a cantilever beam with 
exponentially varying width and joined by a 
mass-spring system at the free end. Wang et al. 
[6] studied the derivation of the frequency  
equation of flexural vibrating cantilever beam 
considering the bending moment generated  by  
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a mass attached at the free end of the beam The 
results show that the inertial moment of the mass has 
the significant effect on the natural frequency  and 
the shape mode. Nuttawit and Arisara 
Chaikittiratana. [7] applied the differential transform 
method (DTM) to investigate linear and nonlinear 
vibration problems of elastically end restrained of 
functionally graded beams. Suddoung et al. [8] by 
using the DTM analysed the free vibration stepped 
response of beams with arbitrary boundary 
conditions. Dongyan et al. [9] investigated an 
accurate solution method for free vibration of the 
Timoshenko beam with general elastic restraints at 
the end points. Sayed Mojtaba et al. [10] investigated 
the free vibration analysis of beam with an 
intermediate sliding connection and joined by a 
mass-spring system and elastically supported. 
Banerjee J. R [11]. assembling the dynamic stiffness 
matrix of the beam and spring-mass system, the 
Wittrick–Williams algorithm employed to derive 
natural frequencies and mode shapes of the 
combined system. The Fourier series has also been 
used to investigate the free vibration of beams with 
general restrained boundaries Kim, H. K et al. [12]. 
Lau, J. H [13]. dealt the vibration Frequencies and 
mode shapes for a constrained cantilever at some 
point.  Darabi et al. [14] analysed the free vibrations 
of a beam with a mass-spring system with different 
boundary conditions both numerically and 
analytically. 

In this study, according to a literature survey and 
as known that the free vibration’s amplitude is the 
important phenomenon governing the level of 
vibrations produced in a bridge-beam like structure, 
the objective is to analyse the free vibration response 
of a cantilever E-B beam with various non-classical 
boundary conditions, a problem which can be 
viewed as a generalization of some cases study 
presented in the literature [1], [14] in which a 
developed analytical solution and a numerical 
method based on the DTM method are used, in order 
to understand the effect of various boundary 
conditions on behaviors of the studied beam. The use 
of the differential transforms method (DTM) in the 
present analysis is justified by the fact that this has 
the advantages of rapid convergence and of its 
effectiveness, to solving nonlinear equations which 
there is no analytical solution. 
  
2. MECHANICAL MODELS AND PROBLEM 

FORMULATION   
 

2.1. ANALYTICAL SOLUTION  

Consider the configuration represented 
schematically in Fig. 1, a uniform cantilever Euler-
Bernoulli beam attached by mass M and supported 
at the tip by various boundary conditions, these 
linear boundary conditions include the translation 
spring with stiffness KT, rotational spring with 
stiffness KR, the beam is assumed to be of length L 
and uniform cross-sections. In order to study the 
variation of the natural frequency and mode shape 

by taking into account the influence of the boundary 
conditions, as shown in Fig. 1, seven configuration 
of boundary condition study are presented. From 
these examples, some of them have been studied 
previously and presented here for validation, and 
we note that the first case is the general cases which 
combine all the defined non-classical boundary 
conditions. Determining the characteristic 
frequency equation described the general system.  

 
 

Fig. 1. Scheme of a cantilever Euler-Bernoulli beam 
attached by mass M and supported by translational 

springs KT and rotational springs KT at the end. 
 

The equation of motion for free vibration of 
a Euler-Bernoulli beam is: 

 EI
பర୷(ଡ଼,୲)

ப୶ర + ρA
பమ୷(ଡ଼,୲)

ப୲మ = 0,  0 < X < L          (1) 
Where y (x, t) is the transverse displacement 
response at the coordinate measured along the axis 
of the beam with its origin at its left extremity 𝑋 and 
at time t, EI, A, ρ and L are respectively the flexural 
rigidity, the cross-sectional area, the mass density, 
and the length of the beam.  

For any mode of vibration, the transverse 
displacement y (x, t) may be written in the form:  
y(X, t) = W(X)e୧ω୲                                              (2) 
Where ω is the circular frequency and w(x) is the 
mode shape, substituting Eq. (2) into Eq. (1) 
leads to:  
பర୛(ଡ଼)

பଡ଼ర −
னమ஡୅

୉୍
W(X) = 0                                      (3) 

Eq. (3) can be cast into the dimensionless form as:  
பర୵(୶)

ப୶ర − βସw(x) = 0                                            (4) 

Where  

x =
ଡ଼

୐
 ,   w(x) =

୛(ଡ଼)

୐
 and   βସ =

ωమρ୅୐ర

୉୍
 

As a function of x, the solution of Eq. (4) can be 
given by: 

w(x) == σ1 sin(βx) + σ2 cos(βx) + σ3 sinh(βx) +
                    σ4 cosh(𝛽𝑥)                                              

(5) 

With σ1, σ2, σ3 and σ4 are shape coefficients which 
can be found by using the boundary conditions. 
The beam is clamped at the left end, hence the 
deflection and slope, Eq. (5) reduce to:  

w(x) == σ1 (cos(βx) − cosh(βx)) + 

                      σଶ (sin(βx) − sinh(βx)                      (6) 

By using the new approach proposed by 
Paupitz et al. [1], the boundary conditions are 
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described in terms of dynamic stiffness. The force 
and moments acting on the beam at the tip are 
given respectively by: 

F୵(1) = Z୛w(1),  Mθ(1) = Zθw′(1)              (7)  

Where ZW, and Zθ represent the dynamic stiffness 
for lateral and rotator displacement. At the tip, 
Shear force and bending moment are given by: 

F୵ = EI
பయ୵

ப୶య ,  Mθ = EI
பమ୵

ப୶మ                                 (8) 

The Boundary condition of the mechanical 
system in the dimensionless form at the end of the 
cantilever beam shown in Fig. 1 can be expressed 
as:  

ቂ
பయ୵

ப୶య −
୞౓୐య

୉୍
w(x)ቃ

୶ୀଵ
= 0, 

 ቂ
பమ୵

ப୶మ +
୞θ௅

୉୍

ୢ୵

ୢ୶
ቃ

୶ୀଵ
= 0                                 (9) 

Eqs (9) - (6) can be combined to give: 

           ൬Bଵଵ Bଵଶ

Bଶଵ Bଶଶ
൰ ቀ

σଵ

σଶ
ቁ = ቀ

0
0

ቁ                   (10a) 

Where 

Bଵଵ = −(cos(β) + cosh(β)) + ψ
ଶ

(sin(β) + sinh(β)) 

Bଵଶ = −(sin( β) + sinh( β)) − ψ
ଶ

(cos(β) − cosh(β)) 

Bଶଵ = (sin(β) − sinh(β)) + ψ
ଵ

(cos(β) − cosh(β)) 

Bଶଶ = −(cos(β) + cosh(β)) + ψ
ଵ

(sin(β) − sinh(β)) 

 ψ
ଵ

=
୞౓୐య

୉୍
= aଡ଼ − Rβସ    ,Z୛ = K୘ − Mωଶ 

R =
M

ρAL
=

attached mass

Mass of beam
 

ψ
ଶ

=
୞θ୐

୉୍
=

୩౎୐

୉୍
= aθ                                            (10b) 

Where ax and aθ are dimensionless stiffness 
parameters translational and rotational 
respectively and R is the ratio between the 
additional mass M and the cantilever beam mass 
which. The frequency equation can be obtained by 
equating the determinant of Eq.(10a) the 
coefficients in the above set to zero: 

1 +
1 + ψ

ଵ
ψ

ଶ

cos( βx) cosh( βx)
− ψ

ଵ
(tan( βx − tanh( βx) 

− tanh( βx) + ψ
ଶ

(tanh( βx) + tan( βx) − ψ
ଵ
ψ

ଶ
= 0 

  (11) 

Then, the expression for the mode shape of the 
𝑛௧ℎnatural frequencies is given by expression:    
  

w୬(x) = σଵ((cos( β
୬

x) − cosh( β
୬

x) − 

(
cos( β

୬
) + cosh( β

୬
) + ψ

ଶ
(sin( β

୬
) + sinh( β

୬
)

sin( β
୬

) + sinh( β
୬

) − ψ
ଶ

(cos( β
୬

) − cosh( β
୬

))
) 

(sin( β
୬

x) − sinh( β
୬

x))) 
 

     (12a) 

 the normalized mode shape is defined as: 

Wሜ ୬(x) =
୛౤(୶)

ට∫ [୛౤(୶)]
భ

బ

మ
ୢ୶

                    (12b) 

2.2. DTM SOLUTION  

In order to understand the influence of various 
boundary conditions as shown in Fig. 1, in the free 
vibration of the cantilever beam with length L such 
as variation of natural frequencies and mode shapes, 
and in addition with the proposed analytical solution 
presented below, it is of great interest to effectuate 
an analysis with the Differential Transforms Method 
(DTM). With its advantage of rapid convergence and 
easier implantation, the principle of the DTM which 
is based on the Taylor series expansion, is to 
transform the governing differential and boundary 
condition equations into a set of algebraic equations 
using transformation rules. Tables 1-2 respectively 
show the basic operation required in differential 
transformation for the governing differential and 
boundaries conditions. 
 

Table. 1. Basic operator of DTM for the governing 
equation, (Nuttawit and Arisara, 2014) 

  

Original function Transformed function 

𝑓(𝑥) = 𝑔(𝑥) ± ℎ(𝑥) 𝐹[𝑘] = 𝐺[𝑘] ± 𝐻[𝑘] 
𝑓(𝑥) = 𝜆𝑔(𝑥) 𝐹[𝑘] = 𝜆𝐺[𝑘] 

𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) 
𝐹[𝑘] = ෍ 𝐺[𝑘 − 𝑙]

௥

௟ୀ଴

𝐻[𝑙] 

𝑓(𝑥) =
𝑑௣𝑔(𝑥)

𝑑௫𝑥
 𝐹[𝑘] =

(𝑘 + 𝑝)

𝑘
𝐺(𝑘 + 𝑝) 

𝑓(𝑥) = 𝑥௣ 
𝐹[𝑟] = 𝛿(𝑘 − 𝑝) = ൜

0𝑟 ≠ 𝑝
1𝑘 ≠ 𝑝

 
         

 

Table. 2.  Basic operations of DTM for the boundary 
conditions in dimensionless forms  
 
 

x=0                            x=1 
Original 

B.C 
Transformed 

B.C 
Original 

B.C 
Transformed  

B.C 
𝑓(0)
= 0 

𝐹(0) = 0 𝑓(1)
= 0 ෍

∞

௞ୀ଴

𝐹(𝑘)

= 0 
𝑑𝑓(0)

𝑑𝑥
= 0 

𝐹(1) = 0 𝑑𝑓(1)

𝑑𝑥
= 0 

෍ 𝑘

∞

௞ୀ଴

𝐹(𝑘)

= 0 
𝑑ଶ𝑓(0)

𝑑ଶ𝑥
= 0 

𝐹(2) = 0 𝑑ଶ𝑓(1)

𝑑ଶ𝑥
= 0 

෍ 𝑘(𝑘

∞

௞ୀ଴

− 1) 𝐹(𝑘)
= 0 

𝑑ଷ𝑓(0)

𝑑ଷ𝑥
= 0 

𝐹(3) = 0 𝑑ଷ𝑓(1)

𝑑ଷ𝑥
= 0 

෍ 𝑘(𝑘

∞

௥ୀ଴

− 1)(𝑘
− 2) 𝐹(𝑘) 
 
= 0 

 
The general function f(x) in Tables 1-2 is 

considered as the transversal displacement w(x), 
we apply the basic operation of DTM presented 
in Eq. (4) we obtained the recurrence equation 
as:  
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 w[k + 4] =
βర

(୩ାଵ)(୩ାଶ)(୩ାଷ)(୩ାସ)
w[k]          (13) 

Where 

βସ =
ωଶρALସ

EI
 

Let the non-zero values of shear force and 
bending moment indicates by Ω1 and Ω2, with 
applying the basic operations of DTM for the 
boundary condition at x=0, and by using the 
Table. 2, once we obtain: 

w [0] = 0,w [1] = 0, w [2] = Ωଵ, w[3] = Ωଶ  

(14)  

Substituting Eq. (14) into the recurrence Eq. (13) 
leads to 𝑤 [𝑘] for all values of k as follows: 

𝑤 [4𝑘] = 0,    𝑘 = 0,1,2,3, . . ..                     (15a) 

w [4k + 1] = 0,  k = 0,1,2,3, . . ..               (15b) 

w [4k + 2] =
βరౡ

(ସ୩ାଶ)!
Ωଵ,    k = 0,1,2,3, . . .. (15c) 

w [4k + 3] =
βరౡ

(ସ୩ାଷ)!
Ωଶ,  k = 0,1,2,3, . . ..  (15d)  

For the boundary conditions x=1 as presented 
in Eq. (9), by applying the basic operations of 
DTM presented in Table. 2, and by using the 
terms of dynamic stiffness Eq. (7), one obtains: 

෍ k(k − 1)

∞

୰ୀ଴

w [k] + ψ
ଶ

෍ k

∞

୩ୀ଴

w [k] = 0 

෍ k(k − 1)(k − 2)

∞

୩ୀ଴

w [k] − ψ
ଵ

෍ w [k]

∞

୩ୀ଴

= 0 

 (16) 

Substituting the expression w[k] from Eq. (16) 
into Eq. (14) leads to two polynomial equations 
which can be arranged into the matrix form: 

 ൬Dଵଵ Dଵଶ

Dଶଵ Dଶଶ
൰ ൬

Ωଵ

Ωଶ
൰ = ቀ

0
0

ቁ               (17a) 

Where the elements in the matrix are: 

Dଵଵ = ෍
βସ୩

(4k − 1)!

ୖ

୩ୀ଴

− ψ
ଵ

෍
βସ୩

(4k + 2)!

ୖ

୩ୀ଴

 

Dଵଶ = ෍
βସ୩

(4k)!

ୖ

୩ୀ଴

− ψ
ଵ

෍
βସ୩

(4k + 3)!

ୖ

୩ୀ଴

 

Dଶଵ = ෍
βସ୩

(4k)!

ୖ

୩ୀ଴

+ ψ
ଶ

෍
βସ୩

(4k + 1)!

ୖ

୩ୀ଴

 

Dଶଶ = ෍
βସ୩

(4k + 1)!

ୖ

୩ୀଵ

+ ψ
ଶ

෍
βସ୩

(4k + 2)!

ୖ

୩ୀ଴

 

         (17b) 

 The frequency equation is: 

(෍
βସ୩

(4k − 1)!

ୖ

୩ୀ଴

− ψ
ଵ

෍
βସ୩

(4k + 2)!

ୖ

୩ୀ଴

) 

(෍
βସ୩

(4k + 1)!

ୖ

୩ୀଵ

+ ψ
ଶ

෍
βସ୩

(4k + 2)!

ୖ

୩ୀ଴

) 

 

−(෍
βସ୩

(4k)!

ୖ

୩ୀ଴

− ψ
ଵ

෍
βସ୩

(4k + 3)!

ୖ

୩ୀ଴

) 

(෍
βସ୩

(4k)!

ୖ

୩ୀ଴

+ ψ
ଶ

෍
βସ୩

(4k + 1)!

ୖ

୩ୀ଴

) = 0 

                                                                                   (18) 
 

Solving the frequency equation. Eqs. (11) and 
(18) by using the algorithm of Newton Raphson 
programmed in MATLAB environment, and by 
solving the Eq. (16), one can obtain the 
frequency values in the flowing form β = βk

[ϵ] , 
where k=1,2,3,…,ϵ, in which βk

[ϵ] is the kth 
estimated frequency corresponding to ϵ, hence, 
an appropriate value of ϵ is obtained by 
convergence analysis with the following 
equation βk

[ϵ] - βk
[ϵ-1] ≤ λ where λ is a given error 

tolerance. The mode shape function can be 
obtained by using the expression:   
 

w(x) = ෍ x୩

ୖ

୩ୀ଴

w[k] 

w(x) = ෍
β

୬
ସ୩

(4k + 2)!
x(ସ୩ାଶ)

ୖ

୩ୀ଴

+ Ωଶ ෍
β

୬
ସ୩

(4k + 3)!
x(ସ୩ାଷ)

ୖ

୩ୀ଴

 

 Where 

Ωଶ = −
∑

β
୬

ସ୩

(4k)!
ୖ
୩ୀ଴ + ψ

ଶ
∑

β
୬

ସ୩

(4k + 1)!
ୖ
୩ୀ଴

∑
β

୬
ସ୩

(4k + 1)!
ୖ
୩ୀଵ + ψ

ଶ
∑

β
୬

ସ୩

(4k + 2)!
ୖ
୩ୀ଴

 

  (19) 
  Where ψ2 is defined in the Eq. (10b). 
 

3. NUMERICAL RESULTS AND DISCUSSION 

 
In this section, with the aim of analysing the 

effect of various boundary conditions in the free 
vibration response of a cantilever beam as shown 
in Fig.1, and to show the versatility of the 
aforementioned theory, like the analytical and 
numerical solution, six examples are given to 
illustrate this, and are presented as a 
simplification referring to the example 1. In 
addition, most parameters affect the frequency 
and mode shape of the specified case, are 
considered in term of non-dimensional ratios, 
such as non-dimensional translational stiffness 
ax, rotational stiffness aθ, and non-dimensional 
mass R, these ratios are defined in Eq. (10b).  
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Example 1: cantilever beam with rotational, 
translation spring and mass restraint at 
the tip 

 

By solving Eq. (11) and (18), we can obtain 
the values of three first dimensionless natural 
frequencies, which are listed in Table3 
(Appendix 1). Fig. 2, shows the variation of the 
first three dimensionless frequencies as a 
function of the kth eigenvalues defined by the Eq. 
(18) corresponding to the values R=ax=aθ=100. 
From this figure, we can observe that 
dimensionless natural frequencies determined by 
the differential transform method converge very 
rapidly, in which for the first non-dimensional 
frequency the convergence is attained for k=1, 
and for the second and third non-dimensional 
frequency convergence is attained for k=2, and 
for k=4 respectively. The convergence is 
assured in terms of the third non-dimensional 
frequency, consequently this is one of the reasons 
why the DTM is used in this work. Examining 
Fig. 3, which represents the first three mode 
shapes of the beam with fixed values 
R=ax=aθ=100 and a comparison between the 
analytical solution and DTM solution, it can be 
seen that there is an excellent agreement between 
the two solutions, which shows the accuracy of 
the proposed solution. Fig. 4 shows the first three 
dimensionless natural frequencies βi=1,2,3 of a 
beam with various parameters of R, ax and aθ. It 
is observed that the effect of the value of R, ax 
and aθ on the lower mode is more significant, and 
can be drawn, particularly for the fundamental 
mode, that when dimensionless stiffness ax=aθ 
keep constant and the mass ratios increase, the 
dimensionless natural frequencies βi of system 
decreases, when dimensionless stiffness ax=aθ 
increase and the mass ratios R . 
keep constant, the dimensionless natural 
frequencies βi increase, at the lower modes are 
more sensitive to the boundary restraints then the 
natural frequencies at the higher modes, stiffness 
parameter, and mass ratios give significant 
change on the natural frequencies.  
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Fig. 2. Convergence of the first, second and third 
natural frequencies with R=ax=aθ=100 

 

 
Fig. 3. The 1st to 3th mode shape of a beam with 
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Example 2: Cantilever beam with point mass 
and translational spring  

In the present case, and referring to the general 
case, the rotational spring is neglected aθ, which a 
variation of the natural frequencies can be 
produced. Table 4 (Appendix 1) shows the 
variation of the first three dimensionless natural 
frequencies as a function of the non-dimensional 
mass coefficient R and the non-dimensional 
stiffness coefficient ax, which are obtained from 
Eqs. (11) and (18) and includes a comparison 
between the results proved by Kim, H. K et al. [12], 
which they, in their paper, treated the same 
problem by using the Fourier series. From this 
table, one can notice clearly that the obtained 
results are in good agreement with those obtained 
by using the Fourier transform, with a slight error, 
the think which explain the accuracy of the 
presented methods. In addition, other conclusions 
also can be drowned for a fixed value of R, as the 
non-dimensional stiffness coefficient ax increases 
the dimensionless natural frequencies βi increase, 
Inversely, for a fixed value of ax, as the non-
dimensional mass coefficient R increases, the 
dimensionless natural frequencies βi decreases.  
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Fig. 5. The first three dimensionless natural frequency 

of a beam with various parameters R, ax. 

Example 3: Cantilever beam joined by mass 
and rotational spring at the tip 
 

In this case, comparably with the case 2, only 
the linear rotational spring and the mass are 
considered, and the vertical spring is neglected ax 
=0, as there are no results in term of frequency in 
the literature. Table 5 (Appendix 1). presents the 
values of dimensionless natural frequencies βi=1,2,3 

for a various value of aθ, and R. From this table, 
especially for the first natural frequency, can be 
drown that for a fixed value of R, as the non-
dimensional stiffness coefficient aθ increases the 
dimensionless natural frequencies βi increase, 
Inversely, for a fixed value of aθ, as the non-
dimensional mass coefficient R increases, the 
dimensionless natural frequencies βi decreases.   

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0

1

2
3

4

log
10 (R) log 10

( 
)


1

(a)

 

0
1

2
3

4

4.0

4.2

4.4

4.6

4.8

0

1

2
3

4

log
10 (R)

log 10
( 

)
 

 2

(b)

 

0
1

2
3

4

7.1
7.2
7.3

7.4

7.5

7.6

7.7

7.8

7.9

8.0

0

1
2

3
4

log
10 (R) log 10

( 
)

 

 3

(c)

 
Fig. 6. The first three dimensionless natural 
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Example 4: cantilever beam joined by spring 
system at the tip  

In this case, beam with translational, rotational 
spring, and no mass attached spring boundary 
condition R=0. The dimensionless natural 
frequencies, in this case, are provided in Table. 6 
(Appendix 1) By comparing the present results 
with the available results given by Lau et al [13], 
the  good agreement demonstrate clearly the 
accuracy of the present solutions. From Fig. 7, 
which represents the variation of the first three 
dimensionless frequencies as a function of ax, aθ 
the most conclusions that can be drawn are when 
dimensionless stiffness aθ keep constant and the ax 
increase, the natural frequency of system 
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Fig. 7. The first three dimensionless natural frequency 

of beam with various parameters ax ,aθ 
 

increases, also when dimensionless stiffness aθ 
increase and the ax keep constant, the natural 
frequency of system increases. If ax and aθ 
approach infinity, the beam becomes a clamped-
clamped. 
 
Example 5: Cantilever beam joined by 

translational spring at the tip 

We consider the beam with translational 
spring. The dimensionless natural frequencies in 
this case are provided in Table. 7 (Appendix 1). 
Comparing the present’s results with those 
available given by Banerjee. [11], in which in his 
work the dynamic stiffness matrix and the Wittrick 
– Williams algorithm to derive the natural 
frequencies of a similar system, demonstrate the 
accuracy of the proposed analytical solution. From 
Fig. 8, which illustrates the variation of the first 
three dimensionless natural frequencies as a 
function of ax, important conclusions can be drawn 
that when dimensionless stiffness ax increase, the 
natural frequency of system increases too, Fig. 9 
shows the variation of the first three mode shape 
with various value of ax. It can be seen from the 
results that the non dimensionless parameter ax has 
a significant effect on the natural frequencies and 
mode shape, if ax approaches to infinity the beam 
becomes clamped-pinned system.  
 
Example 6: Cantilever beam joined by 

rotation spring at the tip  

In this case, the cantilever beam is connected 
only by a rotational spring at the end, the effect of 
the vertical spring and mass are neglected, to show 
the influence of the rotational spring with non-
dimensional stiffness aθ, Table 8 (Appendix 1) 
represents the variation of the first three 
dimensionless natural frequency as a function of aθ  
and a comparison between the present results and 
the results presented by Lau et al. [13]. From this 
table and fig.12, the accuracy of the proposed 
solution proposed has been proved, and one can 
conclude that there is a slow effect  in  dimension- 
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less natural frequencies caused by the presence of 
this rotational spring at the beam’s end for slow 
values of aθ, the think which creates a difference 
between this case and the case 5 where only the 
vertical spring is introduced.  

 

 

 
Fig. 9. The first three mode shape of beam with various 

values of ax 
 

From fig. 12, represents the variation of the 
first dimensionless natural frequency as a function 
of the non-dimensional stiffness ratio aθ, ax, one 
can notice that for a specified value of these 
parameters, with the present calculation and 
examples, can be obtained for any value of aθ, ax  
and i.e. for pinned, clamped and free condition and 
one can say that the powerful of the presented 
solutions reside in its higher ability to give an idea 
about different system of boundary conditions in 
reality. 
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Fig. 10. The first three dimensionless natural frequency 
of beam with various parameters aθ  
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CONCLUSIONS  

The free vibration analysis of a cantilever 
Euler-Bernoulli beams with various non-classical 
linear boundary conditions at the tip, such as a 
linear rotational and vertical springs and a 
concentrated mass has been investigated in this 
study. The effect of these systems on the modal 
characteristics such as natural frequencies and 
mode shapes of the beam in different 
configurations is demonstrated by two methods, 
where a developed analytical solution and a 
numerical method based on the DTM are used. 
With a parametric study, the results show an 
excellent agreement with the previous published 
results and the two presented solutions proved their 
performance, and the expressions for the natural 

frequencies and mode shapes for the 
aforementioned boundary conditions are 
determined. Consequently, the results indicate that 
the present paper can be used very effectively in 
the design of a beam with various non-classical 
supporting conditions. 
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Appendix 1 

Table. 3. The first three dimensionless natural frequencies of a beam with various parameters R, ax and aθ  
 

   ax= aθ frequency 
coefficients 

Method R 
    1    10    102   103   104 

 
 

1  

        𝛽ଵ Analytical 1.4641 0.8671 0.4904 0.2759 0.1551 
DTM 1.4641 0.8671 0.4904 0.2759 0.1551 

𝛽ଶ Analytical 4.1629 4.0556 4.0432 4.0419 4.0418 

DTM 4.1629 4.0556 4.0432 4.0419 4.0418 
𝛽ଷ Analytical 7.2064 7.1416 7.1346 7.1339 7.1338 

DTM 7.2064 7.1416 7.1346 7.1339 7.1338 
 
 

10 

𝛽ଵ Analytical 1.9530 1.1710 0.6633 0.3733 0.2099 
DTM 1.9530 1.1710 0.6633 0.3733 0.2099 

𝛽ଶ Analytical 4.5908 4.4489 4.4321 4.4304 4.4302 
DTM 4.5908 4.4489 4.4321 4.4304 4.4302 

𝛽ଷ Analytical 7.5502 7.4608 7.4509 7.4499 7.4498 
DTM 7.5502 7.4608 7.4509 7.4499 7.4498 

 
 

102 

𝛽ଵ Analytical 2.9875 1.8114 1.0270 0.5780 0.3250 
DTM 2.9875 1.8114 1.0270 0.5780 0.3250 

𝛽ଶ Analytical 4.8755 4.7055 4.6873 4.6854 4.6852 
DTM 4.8755 4.7055 4.6873 4.6854 4.6852 

𝛽ଷ Analytical 7.8952 7.7936 7.7824 7.7812 7.7811 

DTM 7.8952 7.7936 7.7824 7.7812 7.7811 
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103 

𝛽ଵ Analytical 4.5407 3.1396 1.7819 1.0028 0.5640 
DTM 4.5407 3.1396 1.7819 1.0028 0.5640 

𝛽ଶ Analytical 5.5830 4.7499 4.7274 4.7255 4.7253 
DTM 5.5830 4.7499 4.7274 4.7255 4.7253 

𝛽ଷ Analytical 7.9870 7.8583 7.8466 7.8455 7.8454 
DTM 7.9870 7.8583 7.8466 7.8455 7.8454 

 
 

104 

𝛽ଵ Analytical 4.7187 4.7093 3.1599 1.7786 1.0002 
DTM 4.7187 4.7093 3.1599 1.7786 1.0002 

𝛽ଶ Analytical 7.7726 5.6179 4.7321 4.7297 4.7295 
DTM 7.7726 5.6179 4.7321 4.7297 4.7295 

𝛽ଷ Analytical 9.6953 7.8693 7.8537 7.8525 7.8524 
DTM 9.6953 7.8693 7.8537 7.8525 7.8524 

 
Table 4 The first three dimensionless natural frequency of beam with various parameters ax and R

  

  ax  Frequency 
coefficients 

Method R 
1 10 102 103 104 

   
 
 
 
       1 

 
𝛽ଵ  

Analytical 1.3408 0.7906 0.4469 0.2514 0.1414 
DTM 1.3408 0.7906 0.4469 0.2514 0.1414 
Kim et al [12] 1.3413 0.7908 0.4471 0.2514 0.1415 

 
𝛽ଶ 

Analytical 4.0314 3.9384 3.9278 3.9267 3.9266 
DTM 4.0314 3.9384 3.9278 3.9267 3.9266 
Kim et al [12] 4.0331 3.9400 3.9293 3.9281 3.9281 

 
 

𝛽ଷ 
Analytical 7.1341 7.0756 7.0692 7.0686 7.0685 
DTM 7.1341 7.0756 7.0692 7.0686 7.0685 
Kim et al [12] 7.1367 7.0781 7.0718 7.0712 7.0711 

      
 
 
 

 10 

 

𝛽ଵ 
Analytical 1.7988 1.0615 0.6001 0.3376 0.1898 
DTM 1.7988 1.0615 0.6001 0.3376 0.1898 
Kim et al [12] 1.7992 1.0617 0.6002 0.3377 0.1899 

 

𝛽ଶ 
Analytical 4.0346 3.9385 3.9278 3.9267 3.9266 
DTM 4.0346 3.9385 3.9278 3.9267 3.9266 
Kim et al [12] 4.0362 3.9400 3.9293 3.9283 3.9281 

 

 

𝛽ଷ 
Analytical 7.1343 7.0756 7.06929 7.0686 7.0685 
DTM 7.1343 7.0756 7.06929 7.0686 7.0685 
Kim et al [12] 7.1369 7.0781 7.0718 7.0712 7.0711 

        
 
 
 

102 

 

𝛽ଵ 
Analytical 2.9842 1.7808 1.0068 0.5664 0.3185 

DTM 2.9842 1.7808 1.0068 0.5664 0.3185 
Kim et al [12] 2.9847 1.7809 1.0068 0.5665 0.3186 

𝛽ଶ Analytical 4.0788 3.9389 3.9278 3.9267 3.9266 
DTM 4.0788 3.9389 3.9278 3.9267 3.9266 
Kim et al [12] 4.0803 3.9405 3.9293 3.9283 3.9281 

 

 

𝛽ଷ 
Analytical 7.1365 7.0756 7.0692 7.0686 7.0685 
DTM 7.1365 7.0756 7.0692 7.0686 7.0685 
Kim et al [12] 7.1391 7.0782 7.0718 7.0712 7.0711 

    
 
 
 

 103 

𝛽ଵ Analytical 3.8892 3.1396 1.7785 1.0006 0.5627 
DTM 3.8892 3.1396 1.7785 1.0006 0.5627 
Kim et al [12] 3.8907 3.1397 1.7785 1.0007 0.5628 

𝛽ଶ Analytical 5.5007 3.9465 3.9278 3.9267 3.9266 
DTM 5.5007 3.9465 3.9278 3.9267 3.9266 
Kim et al [12] 5.5014 3.9481 3.9294 3.9283 3.9281 

 

𝛽ଷ Analytical 7.1693 7.0759 7.0692 7.0686 7.0685 
DTM 7.1693 7.0759 7.0692 7.0686 7.0685 
Kim et al [12] 7.1718 7.0782 7.0718 7.0712 7.0711 

      
 
 
 

 104 

𝛽ଵ Analytical 3.9236 3.9228 3.1599 1.7783 1,0000 
DTM 3.9236 3.9228 3.1599 1.7783 1,0000 
Kim et al [12] 3.9252 3.9244 3.1600 1.7783 1,0001 

𝛽ଶ Analytical 7.0447 5.6094 3.9286 3.9267 3.92661 
DTM 7.0447 5.6094 3.9286 3.9267 3.92661 
Kim et al [12] 7.0473 5.6095 3.9302 3.9283 3.9281 

 

𝛽ଷ Analytical 9.6787 7.0802 7.0693 7.0686 7.0685 
DTM 9.6787 7.0802 7.0693 7.0686 7.0685 
Kim et al [12] 9.6803 7.0827 7.0718 7.0712 7.0711 
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Table. 5. The first three dimensionless natural frequency of beam with various parameters aθ and R
  

aθ  Frequency 
coefficients 

    

  method R 
1 10 102 103 104 

1 𝛽ଵ Analytical 1.3966 0.8270 0.4677 0.2631 0.14801 
DTM 1.3966 0.8270 0.4677 0.2631 0.14801 

𝛽ଶ Analytical 4.1626 4.0556 4.04323 4.0419 4.04184 
DTM 4.1626 4.0556 4.04323 4.0419 4.04184 

𝛽ଷ Analytical 7.2064 7.1416 7.13462 7.1339 7.1338 
DTM 7.2064 7.1416 7.13462 7.1339 7.1338 

10 𝛽ଵ Analytical 1.6312 0.9774 0.5536 0.3115 0.1752 
DTM 1.6312 0.9774 0.5536 0.3115 0.1752 

𝛽ଶ Analytical 4.5878 4.4489 4.43216 4.4304 4.4302 
DTM 4.5878 4.4489 4.43216 4.4304 4.4302 

𝛽ଷ Analytical 7.5499 7.4608 7.45096 7.4499 7.4498 
DTM 7.5499 7.4608 7.45096 7.4499 7.4498 

 
 
 

102 

𝛽ଵ Analytical 1.7081 1.0297 0.5837 0.3285 0.1847 
DTM 1.7081 1.0297 0.5837 0.3285 0.1847 

𝛽ଶ Analytical 4.8486 4.7051 4.6873 4.6854 4.6852 
DTM 4.8486 4.7051 4.6873 4.6854 4.6852 

𝛽ଷ Analytical 7.8926 7.7936 7.7824 7.7812 7.7811 
DTM 7.8926 7.7936 7.7824 7.7812 7.7811 

 
 

   103 

𝛽ଵ Analytical 1.7177 1.0363 0.5875 0.3306 0.1859 
DTM 1.7177 1.0363 0.5875 0.3306 0.1859 

𝛽ଶ Analytical 4.8881 4.7452 4.7273 4.7255 4.7253 
DTM 4.8881 4.7452 4.7273 4.7255 4.7253 

𝛽ଷ Analytical 7.9567 7.8579 7.8466 7.8455 7.8454 
DTM 7.9567 7.8579 7.8466 7.8455 7.8454 

   
 

  104 

𝛽ଵ Analytical 1.7187 1.037 0.5879 0.3309 0.1861 
DTM 1.7187 1.037 0.5879 0.3309 0.1861 

𝛽ଶ Analytical 4.8923 4.7494 4.7316 4.7297 4.7295 
DTM 4.8923 4.7494 4.7316 4.7297 4.7295 

𝛽ଷ Analytical 7.9636 7.8649 7.8536 7.8525 7.8524 
DTM 7.9636 7.8649 7.8536 7.8525 7.8524 

 
Table. 6. The first three dimensionless natural frequencies of a beam with various parameters ax aθ, 

 

 

aθ 
 

 ax 
  1 10 102 103 104 

 
 
 
 

1 

 
𝛽ଵ

  

Analytical 2.1490  2.6662 3.6818 4.00421 4.0380 
DTM 2.1490  2.6662 3.6818 4.00421 4.0380 
Lau et al [13] 2.1490  2.6662 3.6818 4.00421 4.0380 

 
𝛽ଶ

  
 

Analytical 4.8767 4.9520 5.6517 6.9139 7.1132 
DTM 4.8767 4.9520 5.6517 6.9139 7.1132 
Lau et al [13] 4.8767 4.9520 5.6517 6.9139 7.1132 

 
𝛽ଷ

 

Analytical 7.9676 7.9851 8.1759 9.5537 10.1957 
DTM 7.9676 7.9851 8.1759 9.5537 10.1957 
Lau et al [13] 7.9676 7.9851 8.1759 9.5537 10.1957 

 
 
 
 

10 

𝛽ଵ
 

Analytical 2.3470 2.7146 3.7888 4.3562 4.4229 
DTM 2.3470 2.7146 3.7888 4.3562 4.4229 
Lau et al [13] 2.3470 2.7146 3.7888 4.3562 4.4229 

𝛽ଶ
  

 

Analytical 5.2932 5.3348 5.7561 7.0843 7.4153 
DTM 5.2932 5.3348 5.7561 7.0843 7.4153 
Lau et al [13] 5.2932 5.3348 5.7561 7.0843 7.4153 

 
𝛽ଷ

 

Analytical 8.3543 8.3660 8.4888 9.5593 10.4274 

DTM 8.3543 8.3660 8.4888 9.5593 10.4274 
Lau et al [13] 8.3543 8.3660 8.4888 9.5593 10.4274 

 
 
 
 

102 

𝛽ଵ
 

Analytical 2.4036 2.7309 3.8403 4.5845 4.6754 
DTM 2.4036 2.7309 3.8403 4.5845 4.6754 

Lau et al [13] 2.4036 2.7309 3.8403 4.5845 4.6754 
𝛽ଶ

  
 

Analytical 5.4740 5.5029 5.8130 7.2521 7.7334 
DTM 5.4740 5.5029 5.8130 7.2521 7.7334 
Lau et al [13] 5.4740 5.5029 5.8130 7.2521 7.7334 

 Analytical 8.5990 8.6067 8.6870 9.5649 10.7605 
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Table. 7. The first three dimensionless natural frequencies of a beam with various parameters ax  

 Frequency 
coefficients    

Method  
ax  

     1    10        102        103 104 

𝛽ଵ Analytical 2.0100 2.6389 3.6405 3.8978 3.9237 
DTM  2.0100 2.6389 3.6405 3.8978 3.9237 
Banerjee J. R [11] 2.0100 2.6389 3.6406 3.8978 - 

𝛽ଶ Analytical 4.7037 4.7937 5.6159 6.8762 7.0507 
DTM 4.7037 4.7937 5.6159 6.8762 7.0507 
Banerjee J. R [11] 4.7037 4.7937 5.6160 6.8762 - 

 
𝛽ଷ 

Analytical 7.8568 7.8756 8.0840 9.5525 10.1549 
DTM 7.8568 7.8756 8.0840 9.5525 10.1549 
Banerjee J. R [11] 7.8568 7.8756 8.0840 9.5525 - 

 
Table. 8. The first three dimensionless natural frequencies of a beam with various parameters aθ  

 

Frequency 
coefficients 

Method 
aθ  

1 10 102 103                                         104 
𝛽ଵ Analytical 2.0539 2.2911 2.3564 2.3641 2.3649 

DTM 2.0539 2.2911 2.3564 2.3641 2.3649 
Lau et al [13]

 
2.0539 2.2911 2.3564 2.3641 2.3649 

𝛽ଶ Analytical 4.8686 5.2887 5.4708 5.4950 5.4975 
DTM 4.8686 5.2887 5.4708 5.4950 5.4975 
Lau et al [13]

 
4.8686 5.2887 5.4708 5.4950 5.4975 

 
𝛽ଷ 

Analytical 7.9656 8.3530 8.5982 8.6350 8.6389 
DTM 7.9656 8.3530 8.5982 8.6350 8.6389 
Lau et al [13]

 
7.9656 8.3530 8.5982 8.6350 8.6389 
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