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Digest: Numerical solution of acoustic wave equation in the time domain is performed. 
The mathematical model is described by the partial differential wave equation 
supplemented with appropriate boundary conditions. The goal is to obtain the time 
evolution of the distribution of acoustic pressure, which can serve as the basis for the 
solution of various subsequent problems. The paper discusses the results of the numerical 
analysis of the Gauss monocycle pulse that proceeds from the signal source and incident 
on the semi-circular acoustic diffuser in a free field, realized by a fully adaptive higher
order finite element method implemented in codes Agros2D and Hermes developed by the 
hp-FEM group. Selected results of the computations are compared with the data obtained 
by the commercial code COMSOL Multiphysics.

KEYWORDS: Gauss monocycle pulse, acoustic transient field, finite element method.

1. Introduction

There exist numerous acoustic problems where knowledge of only steady state or 
harmonic acoustic field is insufficient. In such cases it is necessary to solve more 
complicated transient phenomena, which is typical for room acoustics. Of great 
importance are, for example, reflected sound waves produced by an acoustic diffuser 
which is an acoustic element that uniformly disperses sound regardless of the angle of 
incidence. It is used to adjust the sound level distribution in the concert halls, theatres 
or areas that require perfect acoustics. Due to the fact that the design and measurement 
of diffusers is very complicated and expensive, numerical modelling could be an 
effective alternative of solving such tasks in this field. From the viewpoint of 
numerical modeling, it is necessary to define the test signal for determining the 
suitability of the acoustic diffuser. In this field, the Gauss monocycle pulse is mostly 
used, so it is also needed to be able to model this type of signal [1].

2. Mathematical model

The continuous mathematical model of the problem is given by the 
corresponding non-stationary partial differential equation supplemented with 
appropriate boundary conditions. The wave equation will be derived from the
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Newton law of motion, continuity equation and equation of state for the adiabatic 
processes [2].

The mathematical model is defined for ideal fluid with the properties of a perfect 
continuum. In this case we consider several simplifications. All dissipative effects and 
internal forces acting on the particles are neglected, the continuum is assumed as 
homogeneous, isotropic and perfectly elastic and the velocity is considered small.

Newton's law of motion is used in the form of a highly simplified Navier- 
Stokes equation for compressible fluids with neglected viscosity and external 
forces acting on the particles. The equation will be used in the form of

dv
P ^ ~  = -g rad  p , (1)

at
where the symbol p  stands for the specific mass, v represents the velocity, t is 
time and p  denotes the acoustic pressure.

The other mentioned equations are the continuity equation

div ( pv  ) + p  0 , (2)
dt

and state equation for adiabatic processes

p  P~K= C , (3)

where k  is the Poisson ratio (for air k  = 1.4) and C is a suitable constant.
The derivation starts from the application of operator divergence to equation (1)

(  1 ^-div —grad p  = — div v . (4)
P J dt

The next step is the substitution of the equation (2) into the right-hand side of (4)

-  div
1 d 2p

—grad p  = ------ -h r .  (5)
V p p  dt

After the double time derivative of the equation (3) and some simplifications we obtain

= c 2. d2P  (6)
dt2 d t2 ’

where c2 = pK I p  is defined as the speed of sound in gas at the standard Earth 
sea-level conditions (at low gas pressures and densities). Finally, after substitution 
of the term (6) into (5) we obtain the partial differential equation that describes the 
acoustic waves in the time domain

-  div
i d 2p

grad p  + — -  •— t  = 0 , (7)
vP pc dt
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3. Illustrative example

Consider a semi-circular diffuser in free space in front of the planar signal 
source. The left part of Fig. 1 shows the principal arrangement with the 
geometrical dimensions. The problem is considered planar. The basic dimensions 
of the impedance-matched area (representing the free space) are 5 m and 8 m, 
respectively. The source of the signal has a square platform with dimensions of
0.2 m and the signal spreads from one side. It is located at the distance of 5 m 
form the reflective element whose radius is 0.3 m. There are also points (probes 
0 - 6 )  around the diffuser (marked by small black dots) along the radius of 2 m, 
where the values of acoustic pressure are investigated.

3.1. Boundary conditions and environment properties

The solution of partial differential equation (7) requires correct boundary 
conditions. These are defined by either the values or normal derivatives of the 
acoustic pressure p  along particular edges of the area of solution.

The boundary conditions for reflective surfaces, axis of symmetry and 
impedance-matched boundary are specified by the Neumann boundary condition

-  I T  -  D -  (8)
P  dno

where the values of function Dn are defined according to the right part of Fig. 1.

Fig. 1. Left: geometrical arrangement of the system, right: boundary conditions

The surface source of signal is defined by Dirichlet boundary condition

p  -  p  0 K (9)
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where p 0 ( t) is a function describing the source of the signal.
The illustrative example is solved in the air with the following parameters: the 

specific mass density p  = 1.2 kg m 3 and speed of sound c = 343 m s-1 (for the 
ambient temperature T0 = 20 °C).

3.2. Gauss monocycle pulse

The function of the Gauss monocycle pulse is in the solved task defined as the 
Dirichlet boundary condition to the boundary related to the source of signal. The 
time dependence could be explained using the equation

p 0 - )  = A -  -  1 / f 0)  (10)
Here, the symbol A [m3 s-1] is the amplitude of the pulse and f 0 [Hz] denotes the 

pulse bandwidth. The Gaussian pulse and its derivative for the amplitude A = 100 
m3 s-1 and frequency f 0 = 500 Hz are depicted in Fig. 2.

Fig. 2. Left: Gaussian pulse, right: derivative of Gaussian pulse

The parameter f0 is crucial for the calculation of the mesh element size 
according to the term f 0 = c /  (N.h), where h is a typical mesh element size and N is the 
number of elements per wavelength. For our purposes N  = 4 as an acceptable value 
with sufficient accuracy, so that the value of h is 0.1715 m. The maximum surface 
of the triangle shape mesh elements will be in this case about 0.013 m2.

For the convergence of the solution we define the CFL number as the fraction of 
an element the wave travels in a single time step with respect to length h , in other 
words, as the ratio

CFL = -
c -t.step

h
(11)

The typical value of the CFL number in case of the 2nd order elements is about 0.1 for 
reaching the convergence. This value of CFL leads to the length of the time step 0.05 ms.
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The solution of (7) was performed using the higher-order finite element method (hp- 
FEM). This method is implemented in the C++ library Hermes [3] developed by 
hpfem.org group and it is used in Agros2D application [4] developed by the group at the 
University of West Bohemia in Pilsen. Agros2D allows solving partial differential 
equations and exhibits a lot of unique features suitable for numerical modeling 
(interactive geometry creation, support of curvilinear elements and hanging nodes, 
scripting support in Python language, particle tracing and much more).

4.1. Convergence of the results on the example with 500 Hz bandwidth

The computations were performed using the properties of air and mesh which 
have been mentioned in subsection 3.2. Figure 3 shows the dependence of the 
selected CFL numbers on the results of the numerical simulations. The results 
corresponding to the CFL numbers 0.05 and 0.025 are almost identical. The 
boundary securing the convergence of results corresponds to the values ranging 
from 0.05 to 0.1. In principle, higher CFL numbers lead to an inaccurate solution.

Fig. 3. Time dependence of acoustic pressure to CFL number at place of probe 0

The result of the numerical solution in the time domain is the time evolution of 
the distribution of acoustic pressure p  in the whole area of solution in the above 
time range. This distribution at three selected time instants is shown in Fig. 4.

Fig. 4. Distribution of acoustic pressure for the pulse bandwidth 500 Hz in time steps: 
left -10 x 10-3 s, middle-18 x 10-3 s and right- 22 x 10-3 s
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4.2. Results of the pulse simulations with 1 kHz bandwidth

Obtaining an accurate solution at high frequencies (while keeping the CFL number 
on a sufficiently low value) requires a very fine mesh. In this case we use the advantages 
of hp-FEM. The elements covering the area are set to the order of 3 and their maximum 
surface could be set to a lower value. In our case, it was set to 0.03 m2 (while according 
to the calculations in previous case it should be set to 0.003 m2). The transient was 
calculated for time ranging from 0 s to 0.025 s with the length of the fixed time step
At = 3.125x 10-5 s. The CFL number is in this case 0.04. The time-dependent values of 
the acoustic pressure at the position of probes 0, 3 and 6 are depicted in Fig. 5.

Fig. 5. Time dependence of acoustic pressure at place of selected probes

—  Agros2d

1 IU 4w

time (s)

Fig. 6. Comparison of time dependence of acoustic pressure at probe 0 obtained by both used codes
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The same example was also solved by the commercial software COMSOL 
Multiphysics 4.2 [5] using the module called TRANSIENT PRESSURE 
ACOUSTICS. The goal was to verify the results obtained by the Agros2D application. 
Due to different algorithms for meshing the definition area, the resultant mesh differed 
in this case substantially. Nevertheless, the dimensions of the largest elements of the 
mesh were the same as in case of the Agros2D code. The time step in COMSOL was 
used adaptively, with the maximum length 8.79x10-5 s.

The comparison of results at the probe 0 placed on the axis of symmetry is 
carried out in Fig. 6. The curves calculated by Agros2D and COMSOL are very 
similar. The small differences are mainly caused by the accuracy of the numerical 
solution. Due to the shape of the Gauss monocycle pulse, the results from 
Agros2D could be improved by using of adaptive time stepping.

5. Conclusion

Modelling of acoustic transient filed was performed by using the appropriate acoustic 
module of Agros2D application. It has been tested on several examples and in all cases 
the results were consistent with the results obtained using the commercial software 
COMSOL Multiphysics. This paper describes the results from the semi-circular acoustic 
diffuser reflecting a signal in the form of the Gauss monocycle pulse.

The future work in this field will be focused on the correlation of signals for 
obtaining the required time window for the next signal processing (discrete 
Fourier transform and calculation of diffusity and scattering coefficient) and the 
verification of results by experimental measurements.
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