PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza możliwości oczyszczania gazów wylotowych z Hg0 i CO2 na zeolitach syntetycznych otrzymanych z popiołów lotnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Possibility of Exhaust Gases Purification from Hg0 and CO2 on Synthetic Zeolites from Fly Ash
Języki publikacji
PL
Abstrakty
EN
The paper presents the usage possibility of Na-X zeolite as a sorbent of elemental (Hg0) form of mercury or carbon dioxide (CO2). The research material was zeolite obtained in the hydrothermal reaction of fly ash and an aqueous solution of sodium hydroxide. To improve the adsorption capacity of the zeolite with respect to vapour of mercury (Hg0), the zeolite was silver activated by ion exchange method. As a result a form of Ag-X zeolite was obtained. To determine the influence of a modification on sorption capacity of obtained zeolites (Na-X, Ag-X) were subjected to mineralogical and textural characteristics. Then for both zeolites the Hg0 and CO2 sorption studies were performed. Mineralogical analysis of SEM-EDS showed that the sodium ions have been substituted in its entirety with silver ions. After activation of the specific surface area and the share of mesoropores have decreased. However, the share of micropores increased which is associated with substitutions of Na+ ions by ions with a larger ionic radius i.e. silver. Mercury vapour sorption experiment showed almost immediate breakthrough across zeolite Na-X at a flow rate of gas stream at 80 ml/min. Activation of silver greatly improved sorption capacity of tested zeolite and breakthrough of 5% wt. Hg0 occurred after the time of 13017 min. The time for breakthrough of Hg0 for Ag-X is five times longer than for the commercially available activated carbon modified with bromine (AC/Br). Carbon dioxide adsorption studies have shown little effect for sorption capacity for zeolite with silver, where the result for the zeolite Na-X and Ag-X were similar at average level of 25 cm3g-1 for p/p0 = 0.01 (lower values for Ag-X). From obtained results the constants of Dubinin-Raduszkiewicz and Langmuir isotherms were calculated. The monolayer capacity calculated from the equation of Langmuir have shown the lack of differentiation for both examined samples, indicating that the modification of the starting zeolite with silver ions did not improve the sorption capacity with respect to carbon dioxide. Besides in the considered pressure range sorption capacity of zeolites terms to carbon dioxide decreased slightly. The results indicate that the silver modification improves the adsorption of mercury vapour, but has no effect on the sorption of carbon dioxide.
Rocznik
Strony
1306--1319
Opis fizyczny
Bibliogr. 31 poz., tab., rys.
Twórcy
autor
  • Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
autor
  • AGH Akademia Górniczo-Hutnicza
autor
  • Politechnika Lubelska
autor
  • AGH Akademia Górniczo-Hutnicza
autor
  • Politechnika Lubelska
Bibliografia
  • 1. Abrams L., Corbin D. R.: Probing inter-zeolite space. Herron N. & Corbin D.R. editors, in: Inclusion chemistry with zeolites; nanoscale materials by design, Kluwer, Dordrecht 1995.
  • 2. Baran P., Zarębska K., Nodzeński A.: Energy Aspects of CO2 Sorption in the Context of Sequestration in Coal Deposits. Journal Earth of Sciences. 25(4), 719–726 (2014).
  • 3. Barrer R.M., Whiteman J.I.: Mercury uptake in various cationic forms of several zeolites. Journal of the Chemical Society (A): Inorganic, Physical, Theoretical. 20, 19–25 (1967).
  • 4. Chałupnik S., Franus W., Wysocka M., Gzyl G.: Application of zeolites for radium removal from mine water. Environmental Sciences Pollution & Research. 20(11), 7900–7906 (2013).
  • 5. Chudek M., Hycnar J., Janiczek S., Plewa F.: Węgiel brunatny. Utylizacja surowców towarzyszących i odpadów elektrownianych. Wydawnictwo Politechniki Śląskiej, Gliwice 1999.
  • 6. de Boer J.H.: The Structure and Properties of Porous Materials. eds. D.H. Everett and F.S. Stone, Butterworth, London 1958.
  • 7. Franus W., Wdowin M., Franus M.: Synthesis of zeolites for fly ash development. Environmental Monitoring and Assessment. 186(9), 5721–5729 (2014).
  • 8. Franus W., Wdowin M.: Removal of ammonium ions by selected natural and synthetic zeolites. Gospodarka Surowcami Mineralnymi – Mineral Resources Management. 26/4, 133–148 (2010).
  • 9. Franus W., Wdowin M.: Wykorzystanie popiołów lotnych klasy F do produkcji materiału zeolitowego na skalę półtechniczną. Polityka Energetyczna. 14(2), 79–91 (2011).
  • 10. Franus W.: Characterization of X-type zeolite prepared from coal fly ash. Polish Journal of Environmental Studies. 21(2), 337–343 (2012).
  • 11. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz B., Davidson O., de Coninck H. C., Loos M., Meyer L. A. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 2005.
  • 12. Jockenhövel T., Schneider R., Sandell M., Schlüter L.: Optimal Power Plant Integration of Post-Combustion CO2 Capture. Siemens AG, Energy Sector Germany, POWER-GEN Europe 2009 – Cologne, Germany 2009.
  • 13. Klinik J.: Tekstura porowatych ciał stałych. AGH – Ośrodek EdukacjiNiestacjonarnej, Kraków 2000.
  • 14. Liu H., Peng S., Shu L., Chen T., Bao T., Frost R.L.: Effect of Fe3O4 addition on removal of ammonium by zeolite NaA. Journal of Colloid Interface Science. 390/1, 204–210 (2012).
  • 15. Merrikhpour H., Jalali M.: Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy. 15, 303–316 (2013).
  • 16. Morency J.R. , Panagiotou T., Senior C.L.: Laboratory Duct Injection of a Zeolite-Based Mercury Sorbent. Presented at the Annual Meeting of the Air & Waste Management Association, Salt Lake City 2000.
  • 17. Stanger R., Wall T.: Suplhur impacts during plverised coal combustion in oxy-fuel technology for carbon capture and storage. Progress in Energy Combustion Science. 37, 69–88 (2011).
  • 18. Stein A., Ozin G.E., Macdonald P.M., Stucky G.D., Jelinek R.: Class A Sodalites: Silver, Sodium Halosodalites. Journal of the American Chemical Society. 114(3), 5171–5186 (1992).
  • 19. Swanepoel J.C., Strydom C.A.: Utilisation of fly ash in a geopolymeric material. Applied Geochemistry. 17, 1143–1148 (2002).
  • 20. Tarkowski R., Sroczyński W., Luboń K., Wdowin M.: Wstępne wyniki testu aparatury do ciągłego pomiaru stężenia CO2 w powietrzu glebowym na stanowisku w Szczawnicy. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 14, 930–944 (2012).
  • 21. Tarkowski R., Uliasz-Misiak B., Wdowin M., Batkiewicz K.: Analiza zawartości CO2 w powietrzu glebowym pod kątem monitoringu składowania dwutlenku węgla. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 12, 847–860 (2010).
  • 22. Tarkowski R., Wdowin M.: Petrophysical and Mineralogical Research on the Influence of CO2 Injection on Mesozoic Reservoir and Caprocks from the Polish Lowlands. Oil & Gas Science and Technology – Rev. IFP Energies nouvelles. 66(1), 137–150 (2011)
  • 23. Uliasz-Boheńczyk A., Mokrzycki E.: Możliwości zastosowania odpadów energetycznych do mineralnej sekwestracji CO2. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 13, 1591–1604 (2011).
  • 24. Wall T., Stanger R., Liu Y.: Gas cleaning challenges for coal-fired oxyfuel technology with carbon capture and storage. Fuel. 108, 85–90 (2013).
  • 25. Walton K.S., Abney M.B., Douglas L.M.: CO2 adsorption in Y and Xzeolites modified by alkali metal cation exchange. Microporous and Mesoporos Materials. 91, 78–84 (2006).
  • 26. Wdowin M., Franus W., Panek R.: Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin. 21(12), 3726–3734 (2012).
  • 27. Wdowin M., Panek R., Franus W.: Badania właściwości zeolitów otrzymywanych z popiołów lotnych pod kątem wykorzystania ich jako sorbentów CO2. Polityka Energetyczna. 17(3), (2014).
  • 28. Wdowin M., Tarkowski R., Franus W.: Textural and mineralogical changes supplementary studies of reservoir and cap rocks selected as a potential sites suitable for underground CO2 storage. The Arabian Journal for Science and Engineering. 39(1), 395–309 (2014)
  • 29. Wdowin M., Wiatros-Motyka M.M., Panek R., Stevens L.A., Franus W., Snape C.E.: Experimental study of mercury removal from exhaust gases. Fuel. 128, 451–457 (2014).
  • 30. Yi H., Deng H., Tang X., Yu Q., Zhou X., Liu H.: Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA. Journal of Hazardous Materials. 15(203–204), 111–117 (2012).
  • 31. Zhu J., Meng X., Xiao F.: Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontier of Chemical Sciences and Engineering. 7(2), 233–248 (2013)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02e5b988-e782-4bec-a012-258c6866226d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.