PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study of CNN and LSTM for opinion mining in long text

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The digital revolution has encouraged many companies to set up new strategic and operational mechanisms to supervise the flow of information published about them on the Web. Press coverage analysis is a part of sentiment analysis that allows companies to discover the opinion of the media concerning their activities, products and services. It is an important research area, since it involves the opinion of informed public such as journalists, who may influence the opinion of their readers. However, from an implementation perspective, the analysis of the opinion from media coverage encounters many challenges. In fact, unlike social networks, the Media coverage is a set of large textual documents written in natural language. The training base being huge, it is necessary to adopt large-scale processing techniques like Deep Learning to analyze their content. To guide researchers to choose between one of the most commonly used models CNN and LSTM, we compare and apply both models for opinion mining from long text documents using real datasets.
Słowa kluczowe
Twórcy
autor
  • SIP Research Team, Rabat IT Center, Mohammed V University in Rabat, Rabat, Morocco
  • Meridian Team, LYRICA Laboratory, School of Information Sciences, Rabat, Morocco
  • IMS Team, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Morocco
  • Meridian Team, LYRICA Laboratory, School of Information Sciences, Rabat, Morocco
  • LRIT, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
  • Meridian Team, LYRICA Laboratory, School of Information Sciences, Rabat, Morocco
Bibliografia
  • [1] W. Yin, K. Kann, M. Yu and H. Schütze, “Comparative Study of CNN and RNN for Natural Language Processing”, arXiv preprint, 2017, arXiv:1702.01923.
  • [2] N. C. Dang, M. N. Moreno-García and F. De la Prieta, “Sentiment Analysis Based on Deep Learning: A Comparative Study”, Electronics, vol. 9, no. 3, 2020, 10.3390/electronics9030483.
  • [3] S. Sohangir, D. Wang, A. Pomeranets and T M. Khoshgoftaar, “Big Data: Deep Learning for financial sentiment analysis”, Journal of Big Data, vol. 5, no. 1, 2018, 10.1186/s40537-017-0111-6.
  • [4] H. Jangid, S. Singhal, R. R. Shah and R. Zimmermann, “Aspect-Based Financial Sentiment Analysis using Deep Learning”. In: Companion of the The Web Conference 2018, 2018, 1961–1966, 10.1145/3184558.3191827.
  • [5] R. Satapathy, E. Cambria and A. Hussain, Sentiment Analysis in the Bio-Medical Domain,Springer, 2017.
  • [6] A. Rajput, “Chapter 3 – Natural Language Processing, Sentiment Analysis, and Clinical Analytics”. In: M. D. Lytras and A. Sarirete (eds.),Innovation in Health Informatics, 2020, 79–97.
  • [7] M. Kraus and S. Feuerriegel, “Sentiment analysis based on rhetorical structure theory: Learning deep neural networks from discourse trees”, Expert Systems with Applications, vol. 118, 2019, 65–79, 10.1016/j.eswa.2018.10.002.
  • [8] L. Li, T.-T. Goh and D. Jin, “How textual quality of online reviews affect classification performance: a case of deep learning sentyment analysis”, Neural Computing and Applications, vol. 32, no. 9, 2020, 4387–4415, 10.1007/s00521-018-3865-7.
  • [9] M. M. S. Missen, M. Boughanem and G. Cabanac, “Opinion mining: reviewed from word to document level”, Social Network Analysis and Mining, vol. 3, no. 1, 2013, 107–125, 10.1007/s13278-012-0057-9.
  • [10] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, “Distributed Representations of Words and Phrases and their Compositionality”. In: Advances in Neural Information Processing Systems, vol. 26, 2013, 3136–3144, arXiv:1310.4546.
  • [11] Q. Le and T. Mikolov, “Distributed Representations of Sentences and Documents”. In: International Conference on Machine Learning, 2014, 1188–1196.
  • [12] L. Zhang, S. Wang and B. Liu, “Deep learning for sentiment analysis: A survey”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4, 2018, 1188–1196, 10.1002/widm.1253.
  • [13] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553, 2015, 436–444, 10.1038/nature14539.
  • [14] A. Krenker, J. Bešter and A. Kos, “Introduction to the Artificial Neural Networks”, Artificial Neural Networks – Methodological Advances and Biomedical Applications, IntechOpen, 2011, 10.5772/15751.
  • [15] A. Krizhevsky, I. Sutskever and G. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems, vol. 25, 2012, 1097–1105.
  • [16] T. Young, D. Hazarika, S. Poria and E. Cambria, “Recent Trends in Deep Learning Based Natural Language Processing”, IEEE Computational Intelligence Magazine, vol. 13, no. 3, 2018, 55–75, 10.1109/MCI.2018.2840738.
  • [17] A. Ibrahim and I. Yasseen, “Using Neural Networks to Predict Secondary Structure for Protein Folding”, Journal of Computer and Communications, vol. 5, 2017, 10.4236/jcc.2017.51001.
  • [18] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink and J. Schmidhuber, “LSTM: A Search Space Odyssey”, IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, 2017, 2222–2232,10.1109/TNNLS.2016.2582924.
  • [19] Q. T. Ain, M. Ali, A. Riaz, A. Noureen, M. Kamran,B. Hayat and A. Rehman, “Sentiment Analysis Using Deep Learning Techniques: A Review”, International Journal of Advanced Computer Science and Applications (IJACSA), vol. 8, no. 6, 2017, 10.14569/IJACSA.2017.080657.
  • [20] P. Singhal and P. Bhattacharyya, “Sentiment Analysis and Deep Learning : A Survey”, Center for Indian Language Technology, Indian Institute of Technology, Bombay, 2016.
  • [21] D. Tang, B. Qin and T. Liu, “Learning Semantic Representations of Users and Products for ocument Level Sentiment Classification”. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015, 1014–1023, 10.3115/v1/P15-1098.
  • [22] J. Xu, D. Chen, X. Qiu and X. Huang, “Cached Long Short-Term Memory Neural Networks for Document-Level Sentiment Classification”, arXiv preprint, 2016, arXiv:1610.04989.
  • [23] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola and E. Hovy, “Hierarchical Attention Networks for Document Classification”. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016, 1480–1489, 10.18653/v1/N16-1174.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02e42748-9c1a-4f1a-94a4-01772f1d4e9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.