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Abstract

The defuzzification of a type-2 fuzzy set is a two stage process consisting of firstly

type-reduction, and secondly defuzzification of the resultant type-1 set. This paper con-

siders three approaches to discrete interval type-reduction: 1. The exhaustive method

which produces the Type-Reduced Set, 2. the Greenfield-Chiclana Collapsing Defuzzi-

fier which gives rise to the Representative Embedded Set Approximation, and 3. the

Nie-Tan Method from which the Nie-Tan Set is derived. In the discrete case these three

type-1 sets are distinct. The behavior of the three sets under fine discretisation is inves-

tigated experimentally, in order to shed light on the relationships between the continuous

versions of these type-1 sets.

1 Introduction

The final stage of a Fuzzy Inferencing System

(FIS) is defuzzification. In a type-2 FIS (Figure

1.) defuzzification consists of two stages 1. type-
reduction, the procedure by which a type-2 set is

converted to a type-1 set, and 2. defuzzification

proper in which this type-1 set is defuzzified to give

a crisp number [8].

This paper concerns three type-reduction strate-

gies for interval type-2 fuzzy sets. These techniques

apply to discrete sets i.e. ones that have been dis-

cretised through a process of slicing. The rationale

for discretisation is that a computer can process a

finite number of slices, whilst it is unable to process

the continuous fuzzy sets from which the slices are

taken. By exploring the effect of making the do-

main discretisation finer, light is shed on the contin-

uous cases of the resultant type-1 sets, which are:

1. The Type-Reduced Set (TRS) as derived through

exhaustive defuzzification,

2. the Representative Embedded Set Approxima-

tion (RESA), created by the Greenfield-Chiclana

Collapsing Defuzzifier (GCCD), and

3. the Nie-Tan Set (NTS), produced by the Nie-Tan

Method.

This paper is structured as follows: The next

section introduces the concepts fundamental to

type-2 fuzzy logic that are used in the rest of the pa-

per. Section 3 presents exhaustive defuzzification,

Section 4 the Greenfield-Chiclana Collapsing De-

fuzzifier, and Section 5 the Nie-Tan Method; these

are all type-reduction strategies applicable to inter-

val type-2 fuzzy sets. In Section 6 the experiments

concerning fine discretisation that form the core of

this paper are described. The results are tabulated

and conclusions drawn. Lastly, in Section 7, fur-

ther work resulting from this piece of research is

discussed.
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Figure 1. Type-2 FIS (from Mendel [8])

2 Preliminaries

To make the paper self-contained, the main con-

cepts that will be used are introduced here.

2.1 Mathematical Definition of a Type-2
Fuzzy Set

The Type-1 Fuzzy Set Let X be a universe of

discourse. A fuzzy set A on X is characterised by

a membership function μA : X → [0,1] and can be

represented as follows [10]:

A = {(x,μA(x)); μA(x) ∈ [0,1]∀x ∈ X}. (1)

An alternative notation for a fuzzy set A with con-

tinuous universe of discourse is

A =
∫

x∈X
μA(x)/x. (2)

When the universe of discourse is discrete the fuzzy

set A is represented as

A = ∑
x∈X

μA(x)/x. (3)

Note that the membership grades of A are crisp

numbers. This sort of fuzzy set is known as a type-1
fuzzy set.

The Type-2 Fuzzy Set In the following we will

use the notation U = [0,1]. Let P̃(U) be the set of

fuzzy sets in U . A type-2 fuzzy set Ã in X is a fuzzy

set whose membership grades are themselves fuzzy

[11, 12, 13]. This implies that μÃ(x) is a fuzzy set

in U for all x, i.e. μÃ : X → P̃(U) and

Ã = {(x,μÃ(x)); μÃ(x) ∈ P̃(U)∀x ∈ X}. (4)

It follows that ∀x∈X ∃Jx ⊆U such that μÃ(x) : Jx →
U. Applying (1), we have:

μA(x) = {(u,μÃ(x)(u))|μÃ(x)(u) ∈U

∀u ∈ Jx ⊆U}. (5)

X is called the primary domain and Jx the primary

membership of x while U is known as the secondary

domain and μÃ(x) the secondary membership of x.

Putting (4) and (5) together we obtain:

Definition 1 (Type-2 Fuzzy Set)

Ã = {(x,(u,μÃ(x)(u)))|μÃ(x)(u) ∈U∀x ∈ X

∧∀u ∈ Jx ⊆U}. (6)

This ‘vertical representation’ of a type-2 fuzzy

set is used to define the concept of an embedded set
(Subsection 2.3) of a type-2 fuzzy set, which is fun-

damental to the definition of the centroid of a type-2

fuzzy set.

When the secondary membership grades of a

type-2 fuzzy set are all 1, the set is known as an

interval type-2 fuzzy set.

Definition 2 (Interval Type-2 Fuzzy Set) An in-
terval type-2 fuzzy set is a type-2 fuzzy set with
a constant secondary membership grade of 1, i.e.
μÃ(x)(u) = 1,∀u ∈ Jx.

2.2 Centroid of a Type-2 Fuzzy Set

Centroid of a Type-1 Fuzzy Set There are sev-

eral techniques for defuzzifying a type-1 set [6,

pages 336–338]. However in this paper we only use

the centroid method. The definition of the centroid

of a type-1 fuzzy set A in X , (also referred to as

the centre of gravity or centre of mass,) requires the

universe of discourse to be a subset of the set of real

numbers. Therefore, from now on we will assume

that the domain of the type-1 fuzzy set is of such

type.

For a continuous universe of discourse the cen-

troid of fuzzy set A in X is defined as

CA =

∫
x
x ·μA(x)dx
∫

x
μA(xi)

. (7)

The centroid when the domain X is discretised
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into n points is

CA =

n

∑
i=1

xi ·μA(xi)

n

∑
i=1

μA(xi)

. (8)

Centroid of a Type-2 Fuzzy Set By apply-

ing Zadeh’s Extension Principle [11], Karnik and

Mendel [5, page 198] define the centroid of a type-

2 fuzzy set:

Definition 3 (Centroid of a Type-2 Fuzzy Set)
The centroid of a type-2 fuzzy set Ã with do-
main X discretised into n points x1, . . . ,xn with
x1 < x2 < .. . < xn. is

CÃ =
∫

u1∈Jx1

. . .
∫

un∈Jxn

[μÃ(x1)(u1)∗ . . .∗

μÃ(xn)(un)]

/
∑n

i=1 xi ·ui

∑n
i=1 ui

. (9)

Note that the centroid is a type-1 fuzzy set in U .

In practice its computation requires the secondary

domain U to be discretised as well as the primary

domain. Obviously this definition is meaningful

only when X is numeric in nature.

Centroid of an Interval Type-2 Fuzzy Set
When Ã is an interval type-2 fuzzy set, i.e.

μÃ(x)(u) = 1 ∀x,u, it follows that the centroid is the

crisp set

CÃ =
∫

u1∈Jx1

. . .
∫

un∈Jxn

1

/
∑n

i=1 xi ·ui

∑n
i=1 ui

. (10)

2.3 Embedded Sets

An embedded type-2 set (or ‘embedded set’ for

short), is a special kind of type-2 fuzzy set, relating

to the type-2 fuzzy set in which it is embedded in

this way: For every primary domain value, x, there

is a unique secondary domain value, u, plus the as-

sociated secondary membership grade that is deter-

mined by the primary and secondary domain values,

μÃ(x)(u).

Definition 4 (Embedded Set) Let Ã be a type-2
fuzzy set in X. For discrete universes of discourse
X and U, an embedded type-2 set Ãe of Ã is defined
as the following type-2 fuzzy set

Ãe =
N

∑
i=1

[μÃ(xi)(ui)/ui]
/

xi ui ∈ Jxi ⊆U ∧ xi ∈ X .

Ãe contains exactly one element from Jx1
,

Jx2
, . . . , JxN , namely u1, u2, . . . , uN, each

with its associated secondary grade, namely
μÃ(x1)(u1),μÃ(x2)(u2), . . . ,μÃ(xN)(uN). [8, page

98, Definition 3-10]

Definition 5 (Degree of Discretisation) The de-

gree of discretisation of a discretised fuzzy set is
the separation of the slices.

Definition 6 (Scalar Cardinality) The scalar car-

dinality of a fuzzy set A defined on a finite universal
set X is the summation of the membership grades of
all the elements of X in A. Thus,

| A |= ∑
x∈X

μA(x). [7, page 17]

To distinguish scalar cardinality from cardinal-

ity in the classical sense, we adopt the ‘‖ ‖’ symbol

for scalar cardinality.

3 Exhaustive Defuzzification

The final defuzzification stage of an FIS con-

sists of two parts. Firstly, through a procedure

known as type-reduction, a type-1 set termed the

Type-Reduced Set (TRS) is derived. The TRS is

identified with the centroid of the type-2 set (Sub-

section 2.2). Defuzzifying the TRS is straightfor-

ward, and this is the second stage of type-2 defuzzi-

fication. The challenging and complex step when

deriving the defuzzified value of a type-2 fuzzy set

is the computation of the TRS.

Algorithm 1, the type-reduction algorithm, was

originally described by Mendel [8, pages 248–252].

It relies on the concept of an embedded set (Subsec-

tion 2.3). This stratagem has become known as the

exhaustive method, as it requires that every embed-

ded set be processed [4].

Stage 2 of Algorithm 1 requires the application

of a t-norm (∗) to the secondary membership de-

grees. In our work we use the minimum t-norm, but

other choices are available [6, page 63]. However

in the context of type-reduction, the product t-norm

is to be avoided as it does not produce meaningful

results for type-2 fuzzy sets with general secondary

membership functions [5, pages 200–201].
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Algorithm: Type-reduction of a discretised

type-2 fuzzy set to a type-1 fuzzy set

Input: a discretised generalised type-2 fuzzy set

Output: a discrete type-1 fuzzy set

1 forall the embedded sets do

2 find the minimum secondary

membership grade {T-norms other than

minimum may be employed};

3 calculate the primary domain (x) value

of the type-1 centroid of the type-2

embedded set;

4 pair the secondary grade with the

x-value to give set of ordered pairs (x,z)

{ some values of x may correspond to more

than 1 value of z };

5 end

6 forall the

7 select the maximum secondary grade

{ make each x correspond to a unique

secondary domain value };

8 end

Embedded sets are very numerous, often to-

talling many trillions. Though individually easily

processed, embedded sets in their totality give rise

to a processing bottleneck simply by virtue of their

high cardinality. Consequently, exhaustive defuzzi-

fication is to be seen as a theoretical approach rather

than a practical technique. At coarse discretisations

this strategy may be implemented but is extremely

slow; at finer discretisations the issues of mem-

ory space and representation of very large numbers

make implementation impossible. Despite its prac-

tical shortcomings, we regard exhaustive defuzzi-

fication as the standard by which the accuracy of

other type-2 defuzzification algorithms is to be eval-

uated.

In the interval case all secondary grades are 1,

which means that the minimum secondary grade is

bound to be 1. Steps 2 and 7 may therefore be elim-

inated from the interval algorithm. All the ordered

pairs of the TRS will be of the form (x,1); graphi-

cally they lie on a horizontal line.

4 The Greenfield-Chiclana Col-
lapsing Defuzzifier

A computationally simple alternative to the ex-

haustive method is the Greenfield-Chiclana Col-
lapsing Defuzzifier [2]. This technique converts

an interval type-2 fuzzy set into a type-1 fuzzy set

which approximates to the Representative Embed-
ded Set (RES), whose defuzzified value is by defi-

nition equal to that of the original type-2 set (Fig-

ure 2.). We term this type-1 set the Representative
Embedded Set Approximation (RESA). As a type-

1 set, the RESA may then be defuzzified straight-

forwardly. Hence the collapsing process reduces

the computational complexity of type-2 defuzzifi-

cation.

Figure 2. A Representative Embedded Set

(continuous case)

Full details of the collapsing algorithm may be

found at [2]. We formally state the Simple1 Repre-

sentative Embedded Set Approximation:

1In [2], we used the term ‘simple’ to describe an interval set in which each vertical slice consists of only two points, correspond-

ing to L and U . The term is redundant in the context of this paper.
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Theorem 1 (Simple Rep. Embedded Set Approx.)
The membership function of the embedded set R de-
rived by dynamically collapsing slices of a discre-
tised type-2 interval fuzzy set F̃, having lower mem-
bership function L, and upper membership function
U, is:

μR(xi) = μL(xi)+ ri (11)

with

ri =

(
‖L‖+

i−1

∑
j=1

r j

)
bi

2

(
‖L‖+

i−1

∑
j=1

r j

)
+bi

, (12)

and bi = μU(xi)−μL(xi), r0 = 0.

This is an iterative formula. Collapsing pro-

ceeds vertical slice by vertical slice. The first slice

is collapsed, the first y-value of the RESA calcu-

lated, the next slice is collapsed and the second y-

value of the RESA calculated, and so on until all

the slices have been collapsed. In this formula bi

is the blur for vertical slice i, i.e. the difference be-

tween the upper membership function and the lower

membership function for slice i. ri is the amount by

which the y-value of L must be increased to give the

y-value of the RESA R.

There are many variants of the collapsing strat-

egy, as slice collapse may proceed in any slice order.

The different variants give rise to slightly different

defuzzified values [3].

During the collapsing process the RESA ap-

proaches the NTS (Section 5; Figures 3 and 4). We

explain this with reference to collapsing forward,

the variant in which collapse takes place in order of

increasing domain value: As the collapse proceeds,

∑ j=i−1
j=1 r j in the collapsing formula (Equation 12)

increases, making the expression ‖L‖+ ∑ j=i−1
j=1 r j

also increase. ri therefore increases, with bi
2

as its

upper bound. This argument is not dependent on

the order of slice collapse, applying equally to any

variant of collapsing.

Figure 3. The RESA with 6 vertical slices (degree

of discretisation 0.2). As collapsing proceeds from

left to right, the RESA values (marked by crosses)

approach the midpoint of L and U from below

Figure 4. The RESA with 11 vertical slices

(degree of discretisation 0.1). As collapsing

proceeds from left to right, the RESA values

(marked by crosses) approach the midpoint of L
and U from below

5 The Nie-Tan Method

Nie and Tan [9] describe a computationally sim-

ple, efficient, approximate type-reduction method

for interval sets, which involves taking the mean of

the lower and upper membership functions of the
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interval set, so creating a type-1 fuzzy set. Symbol-

ically, μN(xi) =
1
2
(μL(xi)+ μU(xi)), where N is the

resultant type-1 set, termed the Nie-Tab Set (NTS).
Figures 5 and 6 depict two NTSs.

Figure 5. The NTS with 6 vertical slices (degree

of discretisation 0.2). The NTS values (marked by

crosses) are at the midpoint of L and U

Figure 6. The NTS with 11 vertical slices (degree

of discretisation 0.1). The NTS values (marked by

crosses) are at the midpoint of L and U

Comparisons have been made in relation to

speed and accuracy for the GCCD and Nie-

Tan Method using the extremely slow exhaustive

method [4] as a benchmark for accuracy. However

the concern of this paper is not in making compar-

isons but rather on the continuous forms of the type-

1 sets resulting from the three type-reduction strate-

gies.

6 What Happens as Domain Dis-
cretisation Becomes Finer?

Experimental evidence [4] strongly suggested

that as the domain discretisation is made finer, the

defuzzified values of both the RESA and the NTS

approach the defuzzified value of the TRS. The re-

mainder of this paper is concerned with further ex-

periments which were conducted to investigate this

phenomenon.

6.1 Experimental Methodology

Three asymmetric test sets were formed with

their primary domains and secondary domains

scaled from 0 to 1. Each set was created in six ver-

sions, reflecting different degrees of discretisation

of the domain, the coarsest employing 3 slices, the

finest 21 slices2.

Asymmetric Gaussian Test Set I This test set (Fig-

ure 7) consists of Gaussian lower and upper mem-

bership functions placed in such a way as to give

an FOU lacking in symmetry. There is no way of

knowing its defuzzified value other than by exhaus-

tive defuzzification (Subsection 3).

Asymmetric Gaussian Test Set II This set (Figure

8) is constructed similarly to the Asymmetric Gaus-

sian Test Set I; its defuzzified value is only revealed

by exhaustive defuzzification.

Asymmetric Gaussian Test Set III This set (Fig-

ure 9) is also constructed along the same lines as the

Asymmetric Gaussian Test Set I. As with test sets I

and II, its defuzzified value may only be determined

by exhaustive defuzzification.

2For the exhaustive method using more than 21 slices generates so many embedded sets that the computation breaks down.
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Figure 7. Asymmetric Test Set I, discretised into 5

vertical slices (degree of discretisation 0.25)
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Figure 8. Asymmetric Test Set II, discretised into

21 vertical slices (degree of discretisation 0.05)
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Figure 9. Asymmetric Test Set III, discretised into

11 vertical slices (degree of discretisation 0.1)

Each version of each test set was defuzzified

using MatlabT M implementations of the exhaustive,

collapsing3 and Nie-Tan methods, and the defuzzi-

fied values recorded. In order to exhibit the conver-

gence trends, it was necessary to record results to a

much greater degree of accuracy than would be ap-

propriate within a practical application. The code

for the tests may be accessed on [1].

6.2 Results and Conclusions

The results of the test runs are shown in Tables

1 to 3. Figures 10 to 12 chart the number of slices

against the defuzzified value for each method for

the three test sets.

A clear pattern of convergence for the three de-

fuzzification methods is revealed. For test sets I and

III the convergence starts from the outset i.e. from

3 slices, but for test set II it starts at 5 slices. Specif-

ically, this set of experiments shows that:

1. As discretisation becomes finer, the exhaustive

defuzzified value converges.

2. As discretisation becomes finer, the collapsing

defuzzified value converges.

3. As discretisation becomes finer, the Nie-Tan de-

fuzzified value converges.

4. All three methods’ defuzzified values converge

to the same value as discretisation becomes

finer4.

5. In every test run the collapsing defuzzified value

is closer to the exhaustive defuzzified value

than the Nie-Tan defuzzified value demonstrat-

ing that the GCCD is more accurate than the

Nie-Tan Method.

It has been demonstrated [4] that in the continu-

ous case the RESA and NTS are identical: The Nie-

Tan method computes μN(xi) =
1
2
(μL(xi)+μU(xi)).

As the degree of discretisation becomes finer, ||L||
in the collapsing formula (Equation 12) tends to in-

finity, making the expression ‖L‖+∑ j=i−1
j=1 r j also

tend to infinity. ri therefore increases, with bi
2

as

its upper bound. Thus in the continuous case the

collapsing defuzzifier computes μR(xi) = μL(xi) +

3The collapsing variant employed for the tests was the outward right-left, which has been shown experimentally to be the most

accurate form of the collapsing algorithm [3].
4Indeed the convergence of the three methods is so marked that for finer discretisations the symbols in Charts 10 to 12 tend to

obscure one another.
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Deg. of Dis- No. of Ver- Exhaustive De- DV Collap- Error Collap- DV Nie- Error Nie-

cretisation tical Slices fuzzified Value sing Method sing Method Tan Method Tan Method

0.5 3 0.2899142309 0.2887656256 -0.0011486053 0.2621675145 -0.0277467164

0.25 5 0.2906756945 0.2901943927 -0.0004813018 0.2838845979 -0.0067910966

0.125 9 0.3043413255 0.3041596296 -0.0001816959 0.3017531920 -0.0025881335

0.1 11 0.3074987724 0.3073656467 -0.0001331257 0.3055512196 -0.0019475528

0.0625 17 0.3125118626 0.3124408475 -0.0000710151 0.3114135349 -0.0010983277

0.05 21 0.3142610070 0.3142075422 -0.0000534648 0.3134149648 -0.0008460422

Table 1. Defuzzified Values and Errors Obtained for Asymmetric Gaussian Test Set I

Figure 10. Relationship between the number of slices and the defuzzified value for Test Set I. Key:

diamonds signify the exhaustive value, triangles down the collapsing value, and triangles up the value

obtained by the Nie-Tan method
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Deg. of Dis- No. of Ver- Exhaustive De- DV Collap- Error Collap- DV Nie- Error Nie-

cretisation tical Slices fuzzified Value sing Method sing Method Tan Method Tan Method

0.5 3 0.4463569414 0.4448341702 -0.0015227712 0.4500873236 0.0037303822

0.25 5 0.3801544893 0.3790081321 -0.0011463572 0.3849969594 0.0048424701

0.125 9 0.3858091233 0.3850411480 -0.0007679753 0.3881115147 0.0023023914

0.1 11 0.3869140095 0.3862692345 -0.0006447750 0.3887383533 0.0018243438

0.0625 17 0.3886718708 0.3882407109 -0.0004311599 0.3897953470 0.0011234762

0.05 21 0.3892851035 0.3889328008 -0.0003523027 0.3901792082 0.0008941050

Table 2. Defuzzified Values and Errors Obtained for Asymmetric Gaussian Test Set II

Figure 11. Relationship between the number of slices and the defuzzified value for Test Set I. Key:

diamonds signify the exhaustive value, triangles down the collapsing value, and triangles up the value

obtained by the Nie-Tan method
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Deg. of Dis- No. of Ver- Exhaustive De- DV Collap- Error Collap- DV Nie- Error Nie-

cretisation tical Slices fuzzified Value sing Method sing Method Tan Method Tan Method

0.5 3 0.9372015952 0.9387776322 0.0015760370 0.9442741258 0.0070725306

0.25 5 0.8448008416 0.8456145928 0.0008137512 0.8509954859 0.0061946443

0.125 9 0.8292260864 0.8296816205 0.0004555341 0.8310512070 0.0018251206

0.1 11 0.8251133032 0.8254723401 0.0003590369 0.8264315382 0.0013182350

0.0625 17 0.8184951716 0.8187130364 0.0002178648 0.8191875153 0.0006923437

0.05 21 0.8161608127 0.8163331340 0.0001723213 0.8166788889 0.0005180762

Table 3. Defuzzified Values and Errors Obtained for Asymmetric Gaussian Test Set III

Figure 12. Relationship between the number of slices and the defuzzified value for Test Set III. Key:

diamonds signify the exhaustive value, triangles down the collapsing value, and triangles up the value

obtained by the Nie-Tan method
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1
2
(μU(xi)− μL(xi)) = μL(xi)+

1
2
μU(xi)− 1

2
μL(xi) =

1
2
(μL(xi) + μU(xi)). Therefore in the continuous

case the collapsing and Nie-Tan methods are equiv-

alent.

The experiments show that though the con-

tinuous TRS is distinct from the continuous

RESA/continuous NTS, the three type-1 sets all

have the same defuzzified value. In conclusion,

– the continuous RESA is identical with the con-

tinuous NTS, and

– the continuous TRS, the continuous RESA and

the continuous NTS all produce the same de-

fuzzified value.

7 Further Work

1. We would like to provide a mathematical proof

that the continuous NTS defuzzifies to the same

value as the continuous TRS.

2. We believe the continuous RESA to be the RES

[4]. We have already shown that the continu-

ous RESA is the same as the continuous NTS.

To prove this conjecture, it would be sufficient

to prove that the continuous NTS has the same

defuzzified value as the continuous TRS.

3. Continuous fuzzy inferencing would be an inter-

esting topic for future research.
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