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Abstract. We consider a multi-channel queueing system with unlimited queue and with 

exponentially distributed service time and the intervals between the arrival of customers 

batches, which uses a hysteretic control mechanism of the input flow intensity. The system 

receives two independent flows of customers, one of which is blocked in an overload mode. 

An algorithm for finding the stationary distribution of the number of customers and station-

ary characteristics (the mean queue length, the mean waiting time in the queue, the prob-

ability of customers loss) is proposed. The obtained results are verified with the help of 

a simulation model constructed with the assistance of GPSS World tools. 
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Introduction 

For the purpose of preventing overloads in the information and telecommuni- 

cation systems simulated by means of queueing systems, hysteretic load control 

with several types of thresholds is used [1]. We can control both an input flow 

and its parameters, and service process. 

According to [1], the queueing systems with hysteretic control may be adequate 

models for evaluating the quality of functioning of SIP servers under overloads. 

Detailed description of the use of such systems to the modeling of SIP servers 

operating under overload conditions is given in [1-3]. 

Because of the practical importance, a large number of publications is devoted 

to the study of queueing systems with hysteretic control. In particular, a sufficiently 

detailed overview of the results obtained in this direction can be found in [4-7]. 

Most studies examined a single-channel system with an arbitrary distribution of 

service time. 

In this paper we consider a multi-channel queueing system X

2
M /M/n  with the 

independent flows of two types of customers. In this system the control is applied 

only to the parameters of input flows. Switchings on the overload mode are carried 
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out not at the moments of the end of customers service, and at the moments of 

arrival of customers in the system. It is more natural to practical applications. 

When constructing a random process describing the number of customers in the 

system, we share its states corresponding to the normal mode and the overload 

mode. It allows us to write the system of equations for the stationary probabilities 

and construct an algorithm to solve it. To find the stationary characteristics of the 

queue, we apply the apparatus of generating functions. Using the same approach 

in [8] the stationary characteristics of the system X
M /M/1  with hysteretic control 

of service intensity are found. 

1. Description of the system 

Let us consider an  n-channel X

2
M /M/n  queueing system that receives indepen- 

dent flows of two types of customer batches. With probability 
k
a  (respectively 

k
b ) 

the number of customers in a batch of the first flow (respectively of the second 

flow) is equal to k  ( 1k ≥ ), and 

( ) ( )

=1 =1 =1 =1

=1, =1; = < , = < , =1,2.
s s

k k s k s k

k k k k

a b a k a b k b s

∞ ∞ ∞ ∞

∞ ∞∑ ∑ ∑ ∑  

The time intervals between the time of arrival of customers batches of the flow 

number k  are independent random variables distributed exponentially with 

parameter 
k
λ  (k = 1, 2). In the total flow being a superposition of the first and 

second type of flows, the time intervals between the time of arrival of customers 

batches have exponential distribution with parameter 
1 2

=λ λ λ+  [9, p. 83]. 

The service time of each customer is distributed exponentially with parameter .µ  

The first-in first-out (FIFO) service discipline is used. 

A two-threshold hysteretic control mechanism of arriving load is realized in the 

system. This mechanism operates as follows. We fix two numbers 1h  and 
2
,h  for 

which the following inequalities 
1 2

< <n h h  hold. From the moment of arrival in 

the system of the first customer and until the moment of presence of 
2
h  customers 

for the first time, the system is functioning in a normal mode and customers of both 

types are accepted for service. As soon as in the system there will be 
2
h  customers, 

the system passes into an overload mode, accept of customers of the second type 

stops and customers of the first type are accepted only. This mode continues until 

the moment when the number of customers in the system is reduced to (
1
1h − ). 

At this moment the system passes into a normal mode of functioning and starts 

over again to accept customers of both types. The normal mode operates up to the 

moment where in the system there will be 
2
h  customers. Then the system goes into 

overload mode, again accept of customers of the second type stops and so on. 
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We assume that the following inequalities 
1

2h n− ≥  and 
2 1

2h h− ≥  hold. 

These assumptions are introduced only in order not to consider cases for which 

the formulas are different from those shown here, and in no way detract from 

the generality of the obtained results. 

2. Stationary distribution of the number of customers 

Let = / ,α λ µ  = /
i i

α λ µ  ( =1,2i ), = / ,nγ α  = / ,
i i

nγ α  ( =1,2i ), then 

1 (1) 2 (1)= a bρ γ γ+  and 1 1 (1)= aρ γ  are coefficients of system loading in a normal 

mode and in an overload mode respectively. 

Let us enumerate the system’s states as follows (see Fig. 1): 
0
s  corresponds to 

the empty system; 
i
s  (

2
1 1i h≤ ≤ − ), to the system with i  customers that operates 

in the normal mode; 
i
x  (

1
i h≥ ), to the system with i  customers that operates in the 

overload mode. 
 

 

Fig. 1. Diagram of the system’s states in the case 
1 1
= =1a b  

Let ( )
i
p t  and ( )

i
q t  be the probability of the fact that at instant t  the system is 

in state 
i
s  and 

i
x  respectively. Assuming that the limits = lim ( )

i i
t

p p t
→∞

 

(
2

0 1i h≤ ≤ − ) and = lim ( )
i i

t

q q t
→∞

 (
1

i h≥ ) exist (the ergodicity conditions to be 

obtained below), we can represent the system of equations for stationary 

probabilities 
i
p  and 

i
q  in the form 

 

1

1 1 1 1 1

2

0 1

1

1 2 1

=0

1

1 2 1 2 1

=0

2

1 1 1 2 1

=0

1

= 0;

( ) ( ) ( 1) = 0 (1 1);

( ) ( ) = 0 ( 2; 1);

( ) ( ) ( ) = 0;

( )

i

i k i k i k i

k

i

i k i k i k i

k

h

h k h k h k h h

k

h

p p

i p p a b i p i n

n p p a b n p n i h i h

n p p a b n p q

n p

λ µ

λ µ λ λ µ

λ µ λ λ µ

λ µ λ λ µ

λ µ

−

− − +

−

− − +

−

− − − − −

−

− +

− + + + + + ≤ ≤ −

− + + + + ≤ ≤ − ≠ −

− + + + + +

− +

∑

∑

∑

2

2 2

2

1 1 2 1

=0

( ) = 0;

h

k h k h k

k

p a bλ λ
−

− − − −
+ +∑

 (1) 
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1 1

1

2 2

2 2 2 2

1

2

1

1 1

1

1 1 1 1 2

=

1 1

1 1 1 2 1 1
2

= =0

11

1 1 1

= =0

( ) = 0;

( ) = 0 ( 1 1);

( ) ( ) = 0;

( ) = 0 (

h h

i

i k i k i

k h

h h

h k h k k h k h k h

k h k

hi

i k k i k i

k h k

n q n q

n q q a n q h i h

n q q a p a B n q

n q q p a n q i

λ µ µ

λ µ λ µ

λ µ λ λ λ µ

λ µ λ µ

+

−

− +

− −

− − − − +

−−

− +

− + +

− + + + + ≤ ≤ −

− + + + + +

 
 − + + + +
 
 

∑

∑ ∑

∑ ∑ 2
);h≥

 (2) 

 
2

1

1

=0 =

=1.

h

k k

k k h

p q

− ∞

+∑ ∑  (3) 

Here 

0

=1

=1 ( 0), =1.
i

i k

k

B b i B− ≥∑  

Let us introduce the notations 

 
2

2

1

0 0 2

=1

1

0 1 1

=0 =1 =

=1 ( 0), =1; = / (0 1);

= / ( ); = ; = ; = .

i

i k k k

k

hs n

k k s k n k h k

k k k h

A a i A p p p k h

q q p k h P p L kp Q q
−

−

− ≥ ≤ ≤ −

≥

∑

∑ ∑ ∑

%

% % % %

 (4) 

Theorem 1. When (1) < ,a ∞  (1) <b ∞  and 
1
<1,ρ  the stationary probabilities 

0
=

i ii
p p p%  

2
(0 1)i h≤ ≤ −  and 

0
=

i ii
q p q%  

1
( )i h≥  exist and are determined from the 

recurrence relations 

 
2

1 (1)

0 1

2

=0 =0

= ;
h i

n n k i k

i k

n a
p

nP L p B

α

α

−

−

−

− + ∑∑ %

 (5) 

 
1 1 2

=0

1
= ( ) (0 1);

1

i

i k i k i k

k

p p A B i n
i

α α
+ − −

+ ≤ ≤ −

+
∑% %  (6) 

 
1 1 2 1

=0

1
= ( ) ( 2);

i

i k i k i k

k

p p A B n i h
n

α α
+ − −

+ ≤ ≤ −∑% %  (7) 

 
1

1 1 2 1 2

=0

= (1 ) ( ) ( 2);
i

i i k i k i k

k

p p p a b h i hγ γ γ

−

+ − −
+ − + ≤ ≤ −∑% % %  (8) 

 
2

2 2 2

2

1 1 1 2 1

=0

1
= ( );
1

h

h k h k h k

k

p p a bγ γ
γ

−

− − − − −

+

+
∑% %  (9) 



The queueing system n/M/M
X

2  with hysteretic control of the input flow intensity 153

 
2

1 2 2

1

1 1 2 1

=0

= ( );

h

h k h k h k

k

q p A Bγ γ

−

− − − −

+∑% %  (10) 

 
1

1

1 1 1 2
= ( 1);

i

i h k i k

k h

q q q A h i hγ
+ −

=

+ ≤ ≤ −∑% % %  (11) 

 
2

1

1

1 1 2

0

= ( );

hi

i k k i k

k h k

q q p A i hγ

−

+ −

= =

 
 + ≥
 
 
∑ ∑% % %  (12) 

and 
1h

p%  is determined from the equation 

 
2 2

2 2 2 2 2

2 3

1 1 2 1 2 1 2 2 2

=0 =0

1
( ) = (1 ) ( ).

1

h h

k h k h k h k h k h k

k k

p a b p p a bγ γ γ γ γ
γ

− −

− − − − − − − − −

+ + − +

+
∑ ∑% % %  (13) 

Proof. The successive summation of the first i (
1

0 2i h≤ ≤ − ) equations of 

system (1) yields relations (6) and (7). We continue this process for 

1 2
1 2,h i h− ≤ ≤ −  to obtain the equalities 

 
11 1 2 1 2

=0

( ) = ( ) ( 1 2),
i

i h k i k i k

k

n p q p A B h i hµ λ λ
+ − −
+ + − ≤ ≤ −∑% % %  (14) 

which yield relations (8). Equality (9) follows from the last equation of system (1). 

We equate the expressions for 
2 1h

p
−

%  that follow from (8) and (9) to obtain equation 

(13). In order to find 
1h

p%  it is necessary to express all 
k
p%  for 

1 2
1 2h k h+ ≤ ≤ −  

in this equation by 
1h

p% . 

The summation of the last equality from (14) and last equation of system (1) 

yields relation (10). Equalities (11) are obtained as a result of the successive 

summation of equations (2) for 
1 2

1.h i h≤ ≤ −  

Multiplying the last equality from (11) by nµ  and successive summing of the 

result with equation (2) for 
2
,i h≥  taking into account (10), we obtain relations 

(12). 

Divide both sides of (14) by nµ  and add the result with (11) for 
1 2

1.h i h≤ ≤ −  

Taking into account the first of the relations (14), we obtain the equalities 

 

1

1 1 1 2 1 2

=0 =0

= ( 1 2).
i i i

i i k i k k i k k i k

k k h k

p q p A q A p B h i hγ γ
+ + − − −

=

 
 + + + − ≤ ≤ −
 
 
∑ ∑ ∑% % % % %  (15) 
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In order to find 
0

p , first with the help of (6), (7), (15), (11) (taking into account 

(10)) and (12) we obtain the equality 

 

2

1

2 2 2

2 1 1

1

=1 1

1 1 1

1 2 1

0 =0 =0 0 =0

=

= .

hn

k k k

k k n k h

h h hi i i

k i k k i k k i k

i k i h k i k i h k h

kp n p q

p A p B q Aα α α

− ∞

= + =

− − −∞ ∞

− − −

= = = = =

 
 + +
 
 

 
+ + + 

 
 

∑ ∑ ∑

∑∑ ∑∑ ∑∑ ∑ ∑

 (16) 

Then taking into account the definitions of ,

i
A  ,

i
B  (1) ,a  (1)b  and normalization 

condition (3) we calculate the sums 

 

2 2 2 2

2

2

1 1 1

1 1 1 1

(1)

0 =0 =0 0 =0 =0

1

(1)

=0 =0

= = ;

= = 1 .

h h h hi

k i k i k k

i k i h k i k k

hi

k i k i k k

i h k h i h k k

p A p A a p

q A q A a p

− − − −∞ ∞

−

= = =

−∞ ∞ ∞

−

= = =

 
+ 

 
 

 
−  

 

∑∑ ∑∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

 (17) 

In view of (17) we rewrite (16) as 

2 2 21 1 1

1 (1) 2

=0 =0 =1 = 1 =0 =1 =0

= 1 = 1 .

h h hi n n n

k i k k k k k k

i k k k n k k k

a p B kp n p p kp n pα α

− − −

−

+

   
+ + + − + −    

  
∑∑ ∑ ∑ ∑ ∑ ∑  

Taking into account the definitions of 
s
P  and 

n
L  (see (4)), we transform the 

obtained equation to the form 

 
2 1

1 (1) 2 0 0

=0 =0

= ( ).

h i

k i k n n

i k

a p p B n p L nPα α

−

−

+ + −∑∑ %  (18) 

Relation (18) implies formula (5), which yields positive values of 
0
p  only under 

the condition 1 (1) < ,a nα  i.e., when 
1
<1.ρ  

Thus, when the conditions (1) < ,a ∞  (1) <b ∞  and 
1
<1ρ are fulfilled, the system 

of equilibrium equations (1) and (2) has a nontrivial solution such that equality 

(3) is valid. Let { ( ),tξ  0}t ≥  be a random process with discrete states 
i
s  

(
2

0 1i h≤ ≤ − ) and 
i
x  (

1
i h≥ ). Since all the states of this irreducible Markovian 

process communicate, the regularity criterion [9, p. 40] implies the regularity of 

this process, and it follows from the Foster ergodic theorem [9, p. 48] that the 

conditions of Theorem 1 are sufficient for the existence of stationary probabilities 

i
p  (

2
0 1i h≤ ≤ − ) and 

i
q  (

1
i h≥ ). The theorem is proved. 
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3. Generating function and its derivative 

Let ( )( )N F z  and ( )( )D F z  denote the numerator and denominator, respectively, 

in the expression for certain function ( ).F z  Consider the generating functions 

2

1

1

=0 = =1

( ) = ; ( ) = ; ( ) = .

h

i i i

i i i

i i h i

P z p z Q z q z A z a z

− ∞ ∞

∑ ∑ ∑  

Theorem 2. Generating function ( )Q z  is determined in the form 

2 2 2

1 2

1 2

1

2 1 1

11

1 1 2 1

=0 =1 =0

( )( )
( ) = ; ( )( ) = (1 ) (1 ( ));

( )( )

( )( ) = ( ) ( ) .

h h k h
h hk i

h k i k h k

k i k

N Q z
Q z D Q z n z z A z

D Q z

N Q z n q z zA z P z p a z z p B

µ λ

µ λ λ λ
− − − −

++ +

− −

− − −

− + −∑ ∑ ∑

  

  (19) 

Proof. The multiplication of the i th equation of system (2) by i
z  (

1
i h≥ ) and 

summation yield 

1

1

1 1

2 2

2

2

2

1

1

2 2 2

2

1
1

1 1

1

1 1

1 2 1

0 =0

1

1 1

2 1

1 2

=0 =1 =0

( )
( ) ( )

=

( )
= ( ) ( ) ( )( ( ) ( ))

i
h i

h k i k

i h k h

h h

hi

k i k k h k

i h k k

h

h

h h k h

hk i

k i

k i k

Q z
n Q z n n q z z q a

z

z p a z p B

Q z
n Q z n n q z A z P z Q z

z

p a z z

λ µ µ µ λ

λ λ

λ µ µ µ λ

λ λ

∞ −

−

−

= + =

− −∞

− − −

= =

−

− − − −

+

− + + − + +

+ +

− + + − + + −

− +

∑ ∑

∑ ∑ ∑

∑ ∑ 2

1

1
= 0.

k h k
p B

− −∑

 

Solving the last equation, we find ( )Q z  in form (19). The theorem is proved. 

Let us simplify the calculation of the derivative of function ( ).Q z  

Lemma 1. For the derivative of function ( )Q z  for =1z  the following formula  

 
1 (1) 1 (1) (2)

2
1 (1)

( ) ( )(1) ( ) ( )(1)( )(1)
(1) = =

( )(1) 2( )

n a N Q a a N QN Q'
Q'

D Q' n a

µ λ λ

µ λ

′′ ′− + +′′
−

′′ −
 (20) 

is valid where 
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2 2 2

1

2 2

2

2 2 2

1

1 2 1

1 1 (1)

=0 =0 =1

1 1

1 2 2 1

=0 =0

1 1 1

1 1 1 (1) (1) (2)

=1 =1 =0

( )(1) = ( 1)

( 1) ( 1) ;

( )(1) = ( 1) 2 ( 1) ( )

h h h k

h k k i

k k i

h h

k k h k

k k

h h h

h k k k

k k k

N Q n h q a p p k i a

k p h p B

N Q n h h q a kp k k p a a p

µ λ

λ λ

µ λ

− − − −

− −

− −

− − −

 
′ − − + + −  

 

− + − +


′′ − − + + + +



∑ ∑ ∑

∑ ∑

∑ ∑ ∑

2 2 2

2

2 1 1

1 2 2 2 1

=0 =1 =0

( )( 1) ( 1) .
h h k h

k i k h k

k i k

p k i k i a h h p Bλ λ
− − − −

− −


+  



+ + + + − +∑ ∑ ∑

 

Proof. We calculate the derivative (1)Q'  taking into account the equalities 

(1) (2) (1)

=1 =2

(1) = = ; (1) = ( 1) = .
k k

k k

A ka a A k k a a a

∞ ∞

′ ′′ − −∑ ∑  

Since 
=1

(1) = =1,
k

k

A a

∞

∑  as a result of addition of the equations (1), we see that 

( )(1) = 0.N Q  

So, function ( )Q z  specified by formulas (19) satisfies the equalities 

 
( )(1) = ( )(1) = ( )(1) = ( )(1) = ( )(1) = ( )(1) = 0;

( )(1) 0.

N Q D Q N Q' D Q' N Q' D Q'

D Q'

′ ′

′′ ≠
 (21) 

The first part of formulas (20) follows from (21). Since 

( )( ) = ( )( ) ( )( ) ( )( ) ( )( );

( )( ) = ( )( ) ( )( ) ( )( ) ( )( );

( )( ) = ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ),

N Q' z N Q z D Q z N Q z D Q z

N Q' z N Q z D Q z N Q z D Q z

N Q' z N Q z D Q z N Q z D Q z

N Q z D Q z N Q z D Q z

′ ′⋅ − ⋅

′ ′′ ′′⋅ − ⋅

′′ ′′′ ′′ ′⋅ + ⋅ −

′ ′′ ′′′− ⋅ − ⋅

 

taking into account (21) we obtain the equality 

1 (1) 1 (1) (2)

( )(1) = ( )(1) ( )(1) ( )(1) ( )(1) =

( ) ( )(1) ( ) ( )(1).

N Q' N Q D Q N Q D Q

n a N Q a a N Qµ λ λ

′′ ′′ ′ ′ ′′⋅ − ⋅

′′ ′= − − − +
 

Thus, the lemma is proved. 

4. Stationary characteristics 

Using the stationary distribution of the number of customers and the derivative 

(1)Q'  we can obtain simple formulas for the main stationary characteristics of the 

system. 
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Given that 

1

(1) = ,
k

k h

Q' kq
∞

=

∑  

the formulas for the stationary mean queue length in the system and the stationary 

mean number of customers in the system  

2 2

1 1

1 1

= 1 =1

(Q) = ( ) ( ) , (N) = ,

h h

k k k k

k n k h k k h

k n p k n q kp kq
− −∞ ∞

+ = =

− + − +∑ ∑ ∑ ∑E E  

we reduce to the form 

2 21 1

= 1 =0 =1

(Q) = (1) 1 , (N) = (1).

h hn

k k k

k n k k

Q' kp n p kp Q'
− −

+

 
+ − − + 

 
∑ ∑ ∑E E  

The formula for the stationary mean number of served customers per unit of 

time  

2

1

11

sv

=1 =

= .

hn

k k k

k k n k h

N kp n p qµ

−− ∞

=

  
  + +

  
  

∑ ∑ ∑  

after using of the normalization condition (3) takes the form 

 
1

sv 0

=1

= (1 ) ( ) .
n

k

k

N n p n k pµ

− 
− − − 

 
∑  (22) 

On the other hand, the served load is determined by the formula 

 
2 1

sv 1 (1) 2

=0 =0

= .

h i

k i k

i k

N a p Bλ λ

−

−

+ ∑∑  (23) 

Equating the expressions (22) and (23), we again arrive at the balance equation 

(18), by which we determine the stationary probability 
0
p  of free system. 

The stationary mean waiting time in the queue equals 

sv

(Q)
(W) = ,

N

E
E  

and the stationary loss probability of customers π  and the stationary loss 

probability of customers of the second type 
2
π  have the form 

2 1
sv

2

=0 =01 (1) 2 (1) (1)

1
=1 , =1 .

h i

k i k

i k

N
p B

a b b
π π

λ λ

−

−

− −

+
∑∑  
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Recall that customers of first type are not lost. To find 
2
π  we have used relation 

(23) and the equality sv 1 (1) 2 (1) 2= (1 ).N a bλ λ π+ −  

5. The case of ordinary input flow 

Since the ordinary flow of customers following equalities hold 

1 1
= =1; = = 0 ( 2); = = 0 ( 1),

k k k k
a b a b k A B k≥ ≥  

the recurrence relations (6)-(12) are simplified and allow us to obtain expressions 

for 
2

(1 1)
k
p k h≤ ≤ −%  and 

1
( )

k
q k h≥%  in explicit form 

2 1

1

1

1 22 1

2 12

2

1

1
= 1

1

1 1 2 1 1 2

1

=0

1

1 1

1 2

1

= (1 ); = ( 1 1);
! !

(1 )
= ( 1); = ( );

1

(1 )
= ( 1).

1

k k

k k k n

h h

i

k h
i k h

k h k hh h

i

i

h hk h

k h

p k n p n k h
k n n

p p h k h q p h k h

q p k h

α α

γ

γ γ

γ
γ

γγ γ

γ

−

−

− +

+ −

− −−

− +−

−

≤ ≤ + ≤ ≤ −

−
≤ ≤ − ≤ ≤

−

−
≥ +

−

∑

∑

% %

% % % %

% %

 

Taking into account that 

2

2 1

= ,
1

h

k

k h

q
q

γ

∞

=
−

∑
%

%  

and using the normalization condition (3) we obtain the formula for 
0
p  

2

2 2

0

1 1

1

1
= .

1

h

h h

p
q

P Q
γ

− −
+ +

−

%
 

Condition for the existence of stationary probabilities in the case of the ordinary 

input flow takes the form 
1
<1.γ  

Since 

2 2

2 2 22

2 1 2 1

2 1 2 1 1 2

=0 1 1

(1 )1
= ( ) = = ,

1 (1 )

k h k h k

k

k h k h k h kh

h h
kq k h h k

q

γ γ
γ γ γ

γ γ

∞ ∞ ∞ ∞

− −

= = =

+ −

− + +

− −
∑ ∑ ∑ ∑  
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for the stationary mean queue length in the system we obtain the expression 

2 2

2

1

1 1

1 1 2

2

= 1 1

(1 )( )
(Q) = ( ) ( ) .

(1 )

h h

k k h

k n k h

h n
k n p k n q q

γ γ

γ

− −

+ =

+ − −

− + − +

−
∑ ∑E  

6. Examples of calculation of the stationary characteristics 

Let us present the results of calculations of stationary characteristics of the 

system, performed using the obtained analytical relations. 
Calculations are performed for the three-channel queueing system ( = 3n ) for the 

values of thresholds 
1
= 7,h  

2
=12h  and following values of parameters 

characterizing the intensity of service and the intensity of customers flow: =1;µ  

= 4,5;λ  
1
= 0,5,a  

2
= 0,3,a  

3
= 0,2;a  

1
= 0,2,b  

2
= 0,3,b  

3
= 0,5;b  = = 0

k k
a b  

( 4k ≥ ). So, customers arrive in batches numbering from one to three and with 

different probabilities distributions of the number of customers in the batch for 

each flow. The mean number of customers in the batch for the first type and second 

type of flows equals (1) =1,7a  and (1) = 2,3b  respectively. 

For a fixed value = 4,5λ  of the parameter of the exponential distribution of 

time intervals between the moments of arrival of customers batches of total flow 

we consider the following pairs of values of the parameters 
1
λ  and 

2
λ  for flows 

of the first and the second type:  

1) 
1 2
= 0,5; = 4; =10,05;N λλ λ  

2) 
1 2
=1; = 3,5; = 9,75;N λλ λ  

3) 1 2=1,5; = 3; = 9,45.N λλ λ  

Here 1 (1) 2 (1)=N a bλ λ λ+  is an intensity of the total flow of customers during the 

normal operating mode of the system. 

The stationary probabilities 
k

p  ( 0k ≥ ) of availability in the system of k  

customers computed for each pair 1) – 3) of values 
1
λ  and 

2
λ  are shown in 

Table 1. Bold are maximum values of 
k

p  which are reached for = 9,k  =11k  and 

=12k  respectively. 

Table 2 shows the values of the stationary characteristics computed for the same 

pairs of values 
1
λ  and 

2
λ . For comparison, the values of these parameters obtained 

by simulation system GPSS World [10, 11] for the value of the simulation time 
5

= 3 10t ⋅  also are presented in Table 2. 

Analysis of the obtained results shows that, despite the close values of the total 

flow intensity N λ  for cases 1) – 3), the characteristics of the queue of the system 

for the considered input data deteriorate significantly with increasing flow intensity 

1 (1)aλ  of the first type customers. 
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Table 3 shows the values of the stationary mean queue length (Q)E  calculated 

using the GPSS World for various laws of distribution of service time: exponential 

distribution with parameter 1,µ =  uniform distribution on the interval [0, 2], 

uniform distribution on the interval [0.5, 1.5] and deterministic value of 1. 

Table 1 

Stationary distributions of the number of customers in the system 

for different pairs of values λ
1
 and λ

2
 

λ
1
 λ

2
 p

0
 p

1
 p

2
 p

3
 p

4
 p

5
 p

6
 p

7
 p

8
 p

9
 

0.5 4  0.0002  0.0010  0.0026  0.0052  0.0115  0.0251  0.0545  0.1186  0.1394  0.1504 

1 3.5  0.0002  0.0007  0.0019  0.0037  0.0080  0.0173  0.0371  0.0799  0.1032  0.1202 

1.5 3  0.0001  0.0003  0.0008  0.0015  0.0033  0.0070  0.0148  0.0315  0.0441  0.0557 

λ
1
 λ

2
 p

10
 p

11
 p

12
 p

13
 p

14
 p

15
 p

16
 p

17
 p

18
 
K  

0.5  4  0.1476  0.1423  0.1230  0.0373  0.0212  0.0107  0.0048  0.0024  0.0012  K  

1 3.5  0.1272  0.1300  0.1219  0.0708  0.0526  0.0374  0.0260  0.0184  0.0130  K  

1.5 3  0.0643  0.0714  0.0744  0.0615  0.0565  0.0510  0.0458  0.0413  0.0372  K  

Table 2 

Stationary system characteristics for different pairs of values λ
1
 and λ

2
 

in comparison with the results of simulation 

λ
1
 λ

2
 E(Q) 

E(Q) 

(GPSS)  
E(W) 

E(W) 

(GPSS)  
π 

π 

(GPSS) 
π
2
 

π
2
 

(GPSS) 

0.5 4 6.324 6.454 2.112 2.156  0.702  0.702  0.767  0.767 

1 3.5 8.103 8.184 2.704 2.739  0.693  0.694  0.839  0.841  

1.5  3  14.482  14.428 4.830  4.814  0.683  0.683  0.935  0.935  

Table 3 

Values of the stationary mean queue length E(Q) for different pairs of values λ
1
 

 and λ
2 calculated using the GPSS World for various laws of distribution of service 

time: 1 - exponential distribution with parameter µ = 1; 2 - uniform distribution 

on the interval [0, 2]; 3 - uniform distribution on the interval [0.5, 1.5]; 

4 - deterministic value of 1 

λ
1
 λ

2
 1 2 3 4 

0.5 4 6.454 6.307 6.234 4.429 

1 3.5 8.184 7.438 7.725 6.990 

1.5  3  14.428 12.754 11.958 11.633 
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Conclusions 

Thus, in this paper we have presented a simple algorithm for finding of the 

stationary distribution of the number of customers and stationary characteristics 

of a queueing system X

2
M /M/n.  The system receives two independent nonordinary 

flows of customers and uses a hysteresis strategy of control of the input flow 

intensity. The results of test calculations are given. The obtained relations can be 

used to solve optimization problems associated with a hysteretic control 

mechanism. 

Analyzing the data from Table 3, we conclude that the formulas for the case 

of exponential service time distribution obtained in this paper can be used for 

evaluative analysis of systems of type X

2
M /G/n  with hysteretic control of the input 

flow intensity. 
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