PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical assessment of thermal behaviour of a superconducting bus-bar with a Nuclotron-type cable

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sections of the superconducting magnets of the SIS100 particle accelerator, under construction at the Facility for Antiproton and Ion Research (FAIR), the Society for Heavy Ion Research (GSI), Darmstadt, are going to be connected with the by-pass lines. Each line will be used to transfer a two-phase helium flow and an electric current. The electric current will be carried by four pairs of superconducting Nuclotron-type cables. Fast-ramping currents are expected to cause the generation of heat within the cables. In this work the results of a numerical thermal analysis of a bus-bar are presented. The amount of heat transferred from the environment was found based on geometric dimensions of the line and applied insulation. The amount of hysteresis loss, generated in the cable during the operation under most demanding regime of the operation of the accelerator, was calculated. According to the amount of the generated heat, the amount of the hysteresis loss is low in relation to the heat generated in the superconducting magnets. Also it was found that the cable used in the line still retains a large margin of current-carrying capacity.
Rocznik
Strony
365--377
Opis fizyczny
Bibliogr. 19 poz., rys., wz.
Twórcy
  • Department of Materials Science and Metallurgy University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
  • Department of Cryogenics and Aerospace Engineering Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Cryogenics and Aerospace Engineering Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Low Temperature and Structure Research Polish Academy of Sciences Okólna 2 str., 50-422 Wrocław, Poland
  • Department of Cryogenics and Aerospace Engineering Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Eisel T., Chorowski M., Iluk A., Kauschke M., Kollmus H., Malcher K., Polinski J., Streicher B., Local Cryogenics for the SIS100 at FAIR, IOP Conference Series: Materials Science and Engineering, Tucson, AZ, USA, vol. 101, no. 1 (2015), DOI: 10.1088/1757-899X/101/1/012075
  • [2] Khodzhibagiyan H.G., Drobin V.M., Fischer E., Kovalenko A.D., Pantsyrny V.I., Potanina L.V., Shikov A.K., Vladimirova N.M., Design and study of new cables for superconducting accelerator magnets: Synchrotron SIS 100 at GSI and NICA collider at JINR, Journal of Physics: Conference Series, vol. 234, no. 2 (2010), DOI: 10.1088/1742-6596/234/2/022017.
  • [3] Acker D., Bleile A., Fischer E., Floch E., Gumenyuk O., Hess G., Kauschke M., Klos F., Knapp T., Leibrock H., Macavei J., Marzouki F., Mierau A., Meier J.P., Moritz G., Muehle C., Mueller H., Pschorn I., Schnizer P., Schroeder C., Shim S.Y., Stafiniak A., Sugita K., Walter F., Weckenmann B., Weipert M., Xiang Y., Development of FAIR superconducting magnets and cryogenic system, GSI Scientific Report, no. 506065, pp. 118–119 (2010).
  • [4] Kauschke M., Xiang Y., Schroeder C.H., Streicher B., Kollmus H., Cryogenic Supply for Accelerators and Experiments at FAIR, AIP Conference Proceedings, vol. 1200, no. 2014 (2014).
  • [5] Fischer E., Schnizer P., Mierau A., Sugita K., Meier J.P., Bleile A., Müller H., Leibrock H., Macavei J., Status of the Superconducting Magnets for FAIR, GSI Scientific Report, vol. 24, no. 3, pp. 474–475 (2014).
  • [6] Fischer E., Kurnyshov R., Shcherbakov P., Analysis of coupled electromagnetic-thermal effects in superconducting accelerator magnets, Journal of Physics: Conference Series, vol. 97, pp. 012261, (2008).
  • [7] Bleile A., Fischer E., Freisleben W., Mierau A., Schnizer P., Szwangruber P., Thermodynamic properties of the superconducting dipole magnet of the SIS100 synchrotron, Physics Procedia, vol. 67, pp. 781–78 (2015).
  • [8] Fischer E., Sugita K., Schnizer P., Khodzhibagiyan H., Nuclotron-type cables: From fast ramped sc. magnets to multipurpose application, IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1–5 (2017).
  • [9] Fischer E., SIS100 Superconducting Magnets Specification Status & Procurement, MAC-06 (2011).
  • [10] Khodzhibagiyan H., Alexeev V., Averichev S., Drobin V., Kovalenko A., Smirnov A., Starikov A., Vladimirova N., Moritz G., Fischer E., Potanina L., Shikov A., Vedernikov G., Design of new hollow superconducting NbTi cables for fast cycling synchrotron magnets, IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 3370–3373 (2003).
  • [11] Fischer E., Kurnyshov R., Shcherbakov P., Analysis of the eddy current relaxation time effects in the fair sis 100 main magnets, IEEE Transactions on Applied Superconductivity, vol. 17, no. 2, pp. 1173–1176 (2007).
  • [12] Tomków Ł., Trojanowski S., Ciszek M., Chorowski M., Heat generation by eddy currents in a shell of superconducting bus-bars for SIS100 particle accelerator at FAIR, Archives of Electrical Engineering, vol. 66, no. 4, pp. 705–715 (2017).
  • [13] Pecher R., McCulloch M., Chapman S., Prigozhin L., 3D-modelling of bulk type-ii superconductors using unconstrained h-formulation, Proc. EUCAS 2003 (2003).
  • [14] Brambilla R., Grilli F., Martini L., Development of an edge-element model for ac loss computation of high-temperature superconductors, Superconductor Science and Technology, vol. 20, no. 1, pp. 16–24 (2007).
  • [15] Bottura L., A practical fit for the critical surface of NbTi, IEEE Transactions on Applied Superconductivity, vol. 10, no. 1, pp. 1054–1057 (2000).
  • [16] Hudson P., Yin F., Jones H., Evaluation of the temperature and magnetic field dependence of critical current densities of multifilamentary superconducting composites, IEEE Transactions on Magnetics, vol. 17, no. 5, pp. 1649–1652 (1981).
  • [17] Deev V., Keilin V., Kovalev I., Kondratenko A., Petrovichev V., Nucleate and film pool boiling heat transfer to saturated liquid helium, Cryogenics, vol. 17, no. 10, pp. 557–562 (1977).
  • [18] Wilson M., Superconducting magnets, Clarendon Press Oxford (1983).
  • [19] Potanina L., Pantsyrny V., Shikov A., Salunin N., Gubkin I., Korpusov V., Khodzhibagiyan H., Kovalenko A., Fischer E., Mueller H., Moritz G., Experimental results on the development of superconducting NbTi/Cu-Mn/Cu wires for magnet systems of SIS100 and SIS300 synchrotrons of FAIR, IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp. 1395–1398 (2010).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02da490e-234e-4d0e-8b45-b4456d2c2b6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.