PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical investigations of natural convection phenomena in a fermentation tank

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the context of investigations of real multiphase flows, the university has its own 350 litre fermentation tank with comprehensive acoustic flow and temperature measurement technology for the systematically investigation, of the influence of the fermentation activity, distribution of yeast and occurring convection phenomena. Due to the many problems with the optical (e.g. PIV) and acoustic (e.g. UDV) measurement in a real fermenting fluid the numerical simulation was already used in earlier publications. To validate the numerical models, extensive experimental investigations were carried out which show that the flow in the fermenter is caused only by the reaction products of the yeast and the cooling panels and controls the yeast distribution. In this paper, both the numerical (CFD) and the experimental investigations serve as a starting point to influence the yeast distribution. The described convection flow can only temporarily guarantee the uniform distribution of the yeast in the fermenter until the sedimentation of the yeast at the tank bottom (bottom-fermenting yeast) finally begins. The aim of the investigation is to influence the convection flow in certain zones by targeted cooling or heating of the jackets in such a way that a uniform spatial distribution of the yeast over the entire fermentation process is ensured and thus optimal conditions for its metabolic processes are given. Finally, the numerical simulation is validated with the experimental data.
Rocznik
Strony
235--244
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Fluid Mechanics and Apparatus Engineering, University of Applied Science Stralsund, Zur Schwedenschanze 15, 18435, Stralsund, Germany
  • Faculty of Mechanical Engineering, Department of Fluid Mechanics and Apparatus Engineering, University of Applied Science Stralsund, Zur Schwedenschanze 15, 18435, Stralsund, Germany
Bibliografia
  • 1. Delgado A., Hartmann C., Baars A., Meironke H., Szymczyk J. A. (2004). Bewegung im Gärtank: Messtechnische Diagnose und Simulation, Tagungsband Brautechnologisches Seminar, Freising.
  • 2. Klembt D., Meironke H. (2019). Numerical approaches for the yeast distribution in a fermentation tank. PAMM Proceeding Applied Mathematics Mechanics, e201900116. doi: 10.1002/pamm.201900116, Vienna.
  • 3. Klembt D., Meironke H. (2017) Numerical approaches for simulation of a biological multiphase flow inside real fermentation tanks, In Proceedings XXIII. International Symposium "Research-Education-Technology", Vol. 23, ISBN 978-3-9817740-2-3, pp. 73-80.
  • 4. Klembt D., Meironke H. (2018). Numerical approaches for the simulation of a real multiphase flow in a fermentation tank, Proceeding Applied Mathematics Mechanics, e201800258. doi: 10.1002/pamm.201800258, Munich.
  • 5. Klembt D., Meironke H. (2018) Experimental investigations of the influence of different bottom shapes on the temperature and velocity fields in a fermentation tank with a biological multiphase flow, In Proceedings 11. International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, doi: 10.7795/810.20190809, Berlin.
  • 6. Heyse, K.-U. (1995). Handbuch der Brauerei-Praxis. Getränke-Fachverlag Hans Carl, Vol. 3, ISBN 3-4180-0736-8, Weihert-Druck GmbH, Darmstadt.
  • 7. Khosrokhavar R., Elsinga G., Farajzadeh R., Bruining H. (2014) Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems, Journal of Petroleum Science and Engineering, Vol. 122, ISSN 0920-4105, pp. 230-239.
  • 8. Crabb D., Maule D. R. (2001). Temperature control and yeast sedimentation characteristics in large storage vessels, E.B.C. fermentation and storage symposium, Zoeterwoude, pp. 168-180.
  • 9. Takeda Y. (2012). Ultrasonic Doppler Velocity Profiler for Fluid Flow, Springer, ISBN 978-4-431-54025-0.
  • 10. Koch S. (1992). Non-intrusive measurement of temperature and velocity in free convection, ISSN 0374-1257, PhD University Göttingen.
  • 11. Becker T. (2001). Ultrasonic velocity – a non-invasive method for determination of density during beer fermentation, Journal of Engineering in Life Sciences, Vol. 2, pp. 61-67.
  • 12. Takeda Y. (1986). Velocity profile measurement by ultrasound Doppler shift method, International Journal of Heat and Fluid Flow, Vol. 7, No. 4, pp. 313-318.
  • 13. Park H., Park J., Jung S. Y. (2019). Measurements of velocity and temperature fields in natural convective flows, International Journal of Heat and Mass Transfer, Vol. 139, ISSN 0017-9310, Pages 293-302.
  • 14. Ohkubo T., Takeda Y. (2006). Accuracy evaluation of high-accuracy flowmeter using UVP. Japan Society of Mechanical Engineering, Series B, pp. 81-89, Japan.
  • 15. Kikura H., Yamanaka K., Aritomi M. (2004). Effect of measurement volume on turbulent flow measurement using ultrasonic Doppler method. In Experiments in Fluids, Vol. 36, doi: 10.1007/s00348-003-0694-x, Japan.
  • 16. Tezuka K., Mori M., Suzuki T., Takeda Y. (2008). Calibration tests of pulse-Doppler flow meter at national standards loops, In Flow Measurement and Instrumentation, Vol. 19, pp. 181-187.
  • 17. Meironke, H. and Klembt, D. and Panten, T. (2017). Untersuchungen zum Einfluss von Gasblasen auf die Ultraschall Doppler Messtechnik mittels optischer und numerischer Methoden. In GALA - Deutsche Gesellschaft für Laser-Anemometrie -, Vol. 25, ISBN 978-3-9816764-3-3, pp. 45/1-45/8, Karlsruhe.
  • 18. Klembt, D. and Meironke, H. and Pommer, E. (2018). Untersuchungen zum Einfluss von Blasensäulen auf die Ultraschall Doppler Messtechnik. In GALA - Deutsche Gesellschaft für Laser-Anemometrie -, Vol. 26, ISBN 978-3-9816764-5-7, pp. 7/1-7/8, Rostock.
  • 19. Klembt, D. and Meironke, H. and Delgado, A. (2019). Untersuchungen zum Einfluss von Blasenschwärmen und -säulen auf die Ultraschall Doppler Messtechnik. In GALA - Deutsche Gesellschaft für Laser-Anemometrie -, Vol. 27, ISBN 978-3-9816764-6-4, pp. 11/1-11/9, Erlangen.
  • 20. Michalek T., Kowalewski T.A. (2005). Natural convection for anomalous density variation of water: Numerical benchmark. In Progress in CFD, Vol. 5.
  • 21. Banaszek J., Jaluria Y., Kowalewski T. A., Rebow M. (1999). Semi-implicit FEM analysis of natural convection in freezing water. Numerical Heat Transfer, Part A, Vol. 36, No. 5, pp. 449-472.
  • 22. Kowalewski T. A., Rebow M. (1999). Freezing of water in a differentially heated cubic cavity. International Journal of Computational Fluid Dynamics, Vol. 11, Nos. 3-4, pp. 193-210.
  • 23. Leonardi E., Kowalewski T.A., Timchenko V., de Vahl Davis G. (1999). Effects of finite wall conductivity on flow structures in natural convection. CHMT99 Proceedings of International Conference Computational Heat and Mass Transfer, Eastern Mediterranean University Printinghouse, Cyprus, pp. 182-188.
  • 24. Dol H. (1998). Turbulence Models for natural convection in side-heated enclosures, International Journal of Heat and Mass Transfer, Vol 44, pp. 2323-2344, doi: 10.1016/S0017-9310(00)00271-4.
  • 25. Nurzynski M. (2004). Numerical investigations of fluidmechanics inside cylindroconical fermentation tanks, Diploma Thesis, Gdansk University of Technology.
  • 26. Le Quéré P., Weisman, C., Paillère H., Vierendeels J., Dick E., Becker R., Locke J. (2005). Modelling of Natural Convection Flows with Large Temperature Differences: A Benchmark Problem for Low Mach Number Solvers. Part 1. Reference Solutions. ESAIM: Mathematical Modelling and Numerical Analysis, 39(3), doi: 10.1051/m2an:2005027, pp. 609-616.
  • 27. Gandhi M. A., Sathe M. J., Joshi J. B., Vijayan P. K. (2011). Two phase natural convection: CFD simulations and PIV measurement, Chemical Engineering Science, Vol. 66, Issue 14, ISSN 0009-2509, pp. 3152-3171.
  • 28. Hiller W., Kowalewski T. A. (1987). Simultaneous measurement of temperature and velocity fields in thermal convective flows. In Flow Visualization IV. C. Veret, Ed., pp. 617-622. Hemisphere, Paris.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02d80130-711e-4f39-9053-07828b7f1d2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.