Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Prognozowanie liczby wypadków drogowych w Polsce według województw
Języki publikacji
Abstrakty
Każdego roku na polskich drogach ginie bardzo duża liczba osób. Z roku na rok wartość ta spada, ale liczba ta nadal jest bardzo wysoka. Pandemia znacznie zmniejszyła liczbę wypadków drogowych, ale wartość ta nadal jest bardzo wysoka. Z tego powodu należy dowiedzieć się, w których województwach dochodzi do największej liczby wypadków drogowych oraz poznać prognozę wypadków na najbliższe lata, aby móc zrobić wszystko, aby tę liczbę zminimalizować. Celem artykułu jest sporządzenie prognozy liczby wypadków drogowych w Polsce w podziale na województwa. W tym celu przeanalizowano miesięczne dane dotyczące liczby wypadków w Polsce w latach 2007-2021 pochodzące ze statystyk Policji oraz dokonano prognozy na lata 2022-2024. Na podstawie uzyskanych danych można stwierdzić, że pandemia spowodowała spadek liczby wypadków drogowych w Polsce średnio o 21%. Rozrzut w zależności od województwa waha się w przedziale: 10% dla województwa lubuskiego do prawie 53% dla województwa lubelskiego. Spadek jest najbardziej zauważalny w województwach lubelskim, wielkopolskim i małopolskim. Ponadto prognozy pokazują, że w obecnej sytuacji możemy spodziewać się dalszego spadku liczby wypadków drogowych w Polsce. Wyniki badania pokazują, że nadal możemy spodziewać się podobnego poziomu wypadków drogowych jak przed pandemią z minimalnym spadkiem na polskich drogach, ale panująca pandemia zniekształca uzyskane wyniki. Do prognozowania liczby wypadków drogowych wykorzystano szeregi czasowe i modele wykładnicze.
Every year a very large number of people die on Polish roads. From year to year, the value decreases, but the number is still very high. The pandemic has significantly reduced the number of road accidents, but the value is still very high. For this reason, it is necessary to find out which provinces have the highest number of traffic accidents and to know the accident forecast for the coming years, so that we can do everything possible to minimize this number. The purpose of the article is to make a forecast of the number of road accidents in Poland by province. For this purpose, monthly data on the number of accidents in Poland in 2007-2021 from the statistics of the Police were analyzed, and a forecast was made for 2022-2024. Based on the data obtained, it can be said that the pandemic caused a decrease in the number of road accidents in Poland by an average of 21%. The spreads depending on the province sniff in the range: 10% for Lubuskie Voivodeship to almost 53% for Lubelskie Voivodeship. The decrease is most noticeable in the Lubelskie, Wielkopolskie and Małopolskie provinces. In addition, forecasts show that in the current situation we can expect a further decrease in the number of road accidents in Poland. The results of the study show that we can still expect a similar level of road accidents as before the pandemic with a minimal decrease on Polish roads, but the prevailing pandemic distorts the results obtained. Time series and exponential models were used to forecast the number of traffic accidents.
Czasopismo
Rocznik
Tom
Strony
13--22
Opis fizyczny
Bibliogr. 57 poz., tab., rys., wykr.
Twórcy
autor
- Akademia Nauk Stosowanych im. Stanisława Staszica w Pile
Bibliografia
- [1] WHO. The Global status on road safety. 2018, 403 pp. ISBN: 9789241565684. Available from: https://www.who.int/publications/i/item/9789241565684
- [2] Tambouratzis T., Souliou D., Chalikias M., Gregoriades A. Maximising accuracy and efficiency of trafficaccident prediction combining information mining with computational intelligence approaches and decision trees J. Artificial IntellSoft Comput. Res., 4 (1) (2014), pp. 31-42
- [3] Zhu L., Lu L., Zhang W., Zhao Y., Song M. Analysis of accident severity for curved roadways based on bayesian networks. Sustainability, 11 (8) (2019), p. 2223
- [4] Arteaga C., Paz A., Park J. Injury severity on traffic crashes: A text mining with an interpretable machine-learning approach Saf. Sci., 132 (2020), Article 104988
- [5] Yang Z. Zhang W., Feng J. Predicting multiple types of traffic accident severity with explanations: A multi-task deep learning framework. Safety Science. Volume 146,2022, 105522, ISSN 0925-7535, https://doi.org/10.1016/j.ssci.2021.105522.
- [6] Gorzelanczyk, P., Pyszewska, D., Kalina, T., Jurkovic, M. Analysis of road traffic safety in the Pila poviat. Scientific Journal of Silesian University of Technology. Series Transport. 2020, 107, 33-52. ISSN: 0209-3324. DOI: https://doi.org/10.20858/sjsutst.2020.107.3.
- [7] Chen C. Analysis and forecast of traffic accident big data ITM Web Conf., 12 (2017), p. 04029, 10.1051/itmconf/20171204029
- [8] Khaliq K.A., Chughtai O., Shahwani A., Qayyum A., Pannek J. Road accidents detection, data collection and data analysis using V2X comunication and edge/cloud computing Electron, 8 (2019), 10.3390/electronics8080896
- [9] Rajput H., T. Som, S. Kar. An automated vehicle license plate recognition system Computer (Long Beach. Calif )., 48 (2015), pp. 56-61, 10.1109/MC.2015.244
- [10] Zheng Z., Wang C., Wang P., XiongY., Zhang F., Lv Y. Framework for fusing traffic information from social and physical transportation data PLoS One., 13 (2018), 10.1371/journal.pone.0201531
- [11] Abdullah E., Emam A., Traffic accidents analyzer using big data, in: Proc. - 2015 Int. Conf. Comput. Sci. Comput. Intell. CSCI 2015, Institute of Electrical and Electronics Engineers Inc., 2016: pp. 392–397. 10.1109/CSCI.2015.187.
- [12] Vilaça M., Silva N., Coelho M.C. Statistical analysis of the occurrence and severity of crashes involvingvulnerable road users. Transp. Res. Procedia., 27 (2017), pp. 1113-1120, 10.1016/j.trpro.2017.12.113
- [13] Bąk. I., Cheba K., Szczecińska B. The statistical analysis of road traffic incities of Poland. Transp. Res. Procedia., 39 (2019), pp. 14-23, 10.1016/j.trpro.2019.06.003
- [14] Chand A., Jayesh S., Bhasi A.B. Road traffic accidents: An overview of data sources, analysis techniques and contributing factors, Materials Today: Proceedings. Volume 47, Part 15, 2021. Pages 5135-5141. ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2021.05.415.
- [15] Helgason A., Fractional integration methods and short Time series: evidence from asimulation study, Polit. Anal. 24 (1) (2016) 59–68http://www.jstor.org/stable/24573204.
- [16] Lavrenz S., Vlahogianni E., GkritzaK., Ke Y., Time series modeling in traffic safetyresearch, Accid. Anal. Prev. 117 (2018) 368–380
- [17] Forecasting based on time series (2022) http://pis.rezolwenta.eu.org/Materialy/PiS-W-5.pdf
- [18] Prochazka J. Camaj M. Modelling the number of road accidents of uninsured drivers and their severity. Proceedings of International Academic Conferences 5408040, International Institute of Social and Economic Sciences. 2017
- [19] Sunny C.M., Nithya S., Sinshi K.S., Vinodini V.M.D. Lakshmi A.K.G., Anjana S., Manojkumar T.K. Forcasting of Road Accident in Kerala: A Case Study. Environmental Science, Computer Science. 2018 International Conference on DataScience and Engineering (ICDSE). DOI:10.1109/ICDSE.2018.8527825
- [20] Szmuksta-Zawadzka M., Zawadzki J. Forecasting on the basis of Holt- -Winters models for complete and incomplete data. Research papers of the Wrocław University of Economics, No. 38, 2009
- [21] Dudek, G. (2013). Forecasting Time Series with Multiple Seasonal Cycles Using Neural Networks with Local Learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_5
- [22] Wójcik A. Autoregressive vector models as a response to the critique of multi-equation structural econometric models. Publishing house of the University of Economics in Katowice. Vol. 193.2014.
- [23] Monederoa B.D., Gil-Alanaa L.A., Martínezaa M.C.V. Road accidentsin Spain: Are they persistent?. IATSS Research. Vol. 45, Issue 3, October 2021, Pages 317-325. https://doi.org/10.1016/j.iatssr.2021.01.002
- [24] Al-Madani H., Global road fatality trends’estimations based on country-wise microlevel data, Accid. Anal. Prev. 111 (2018) 297–310,https://doi.org/10.1016/j.aap.2017.11.035
- [25] Mamczur M. Machine learning How does linear regression work? And is it worth using? https://miroslawmamczur.pl/jak-dzialaregresja-liniowa-i-czy-warto-ja-stosowac/
- [26] Piłatowska M. The choice of the order of autoregression depending on the parameters of the generating model. Econometrics 4(38).2012
- [27] Biswas A.A., Mia J., Majumder A. Forecasting the Number of Road Accidents and Casualties using Random Forest Regression in the Context of Bangladesh July 2019 Economics 10th InternationalConference on Computing, Communication and Networking Technologies (ICCCNT)
- [28] Random forest (2022) https://pl.wikipedia.org/wiki/Las_losowy
- [29] Fijorek K., Mróz K., Niedziela K., Fijorek D. Forecasting electricity prices on the day-ahead market using data mining methods Energy Market "- 12/2010
- [30] Chudy-Laskowska K., Pisula T. Forecast of the number of road acci- dents in Poland. Logistics 6/2014.
- [31] Kashpruk N. Comparative research of statistical models and soft computing for identification of time series and forecasting. Opole University of Technology 2010.
- [32] Procházka J., Flimmel S., Čamaj M., Bašta M. Modelling the Number of Road Accidents. Publishing house of the University of Economics in Wrocław. Wrocław 2017. doi:10.15611/amse.2017.20.29
- [33] Dutta B., Barman M.P., Patowary A.N. Application of Arima model for forecasting road accident deaths in India. Int. J. Agricult. Stat. Sci. Vol. 16, No. 2, pp. 607-615, 2020
- [34] Karlaftis M., Vlahogianni E. Memory properties and fractional integration in trans-portation time-series, Transp. Res. C 17 (2009) 444–453.
- [35] Łobejko S. Time series analysis and forecasting with SAS. Main business school in Warsaw. Warsaw 2015
- [36] Dudek G. Exponential smoothing models for short-term power system load forecasting. Energy market No. 3 (106) – 2013.
- [37] Chudy-Laskowska K. Pisula T. Prognozowanie liczby wypadków drogowych na Podkarpaciu. Logistics. N0 4/ 2015
- [38] Road safety assessment handbook https://www.iung.pl/PJA/wydane/11/PJA11_3.pdf
- [39] Wrobel M.S. Application of neural fuzzy systems in chemistry. PhD thesis. Katowice: University of Silesia. 2017.
- [40] Data mining techniques StatSoft https://www.statsoft.pl/textbook/stathome_stat.html?https%3A-%2F%2Fwww.statsoft.pl%2Ftext-book%2Fstdatmin.html
- [41] Kumar S., Viswanadham V.,Bharathi B. (2019) Analysis of road accident. IOP Conference Series Materials Science and Engineering 590(1):012029. DOI: 10.1088/1757-899X/590/1/012029
- [42] Top Advantages and Disadvantages of Hadoop 3 DataFlair https://data-flair.training/blogs/advantages-and-disadvantages-of-hado-op/
- [43] Perczak G., Fiszeder P. GARCH mo- del - using additional information on minimum and maximum prices. Bank and Credit. Number 2. 2014
- [44] Fiszeder P. GARCH class models in empirical financial research. Scientific Publishers of the Nicolaus Copernicus University. Torun 2009.
- [45] McIlroy R.C., Plant K.A., Hoque M.S., Wu J., Kokwaro G.O., Nam V.H., Stanton N.A. Who is resposible for global road safety? A cross-cultural comparison ofactor maps, Accid. Anal. Prev. 122 (2019) 8–18. https://doi.org/10.1016/j.aap.2018.09.011
- [46] Muck J. Econometrics. Modeling of time series. Stationary. Unit root tests. ARDL models. Co-integration. http://web.sgh.waw.pl/~jmuck/Ekonometria/Ekonometria- Prezentacja5.pdf
- [47] Shetty P., Sachin P.C., Kashyap V.K., Madi V. Analysis of road accidents using data mining techniques. Inernational Research Journal of Engineering and Technology. 04/2017
- [48] Li L, Shrestha S., Hu G. Analysis of road traffic fatal accidents using data mining techniques. 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications(SERA), 2017, pp. 363-370, doi: 10.1109/SERA.2017.7965753.
- [49] Marcinkowska J. Statistical methods and data mining in assessing the occurrence of syncope in the group of narrow-QRS tachycardia (AVNRT and AVRT). Medical University of Karol Marcinkowski in Poznań. Poznań, 2015 http://www.wbc.poznan.pl/Content/373785/index.pdf
- [50] Sebego M., Naumann R.B., Rudd R.A., Voetsch K., Dellinger A.M., Ndlovu C., The impact of alcohol and road traffic policies on crash rates in Botswana, 2004–2011:atime-series analysis, Accid. Anal. Prev. 70 (2008) 33–39, https://doi.org/10.1016/j.aap.2014.02.017
- [51] Bloomfield P. An exponential model in the spectrum of a scalar time series. Biometrika 60 (1973) 217–226 https://www.jstor.org/stable/2334533.
- [52] Central Statistical Office, www.gus.pl (17.04.2022)
- [53] Province names in English, https://www.facebo-ok . c o m / Po g o d a - N a - Pr z yg o -d%C4%99687347091288220/photoa.1077421475614111.1073741838.687347091288220/1077421502280775 (17.04.2022)
- [54] Statistic Road Accident https://statystyka.policja.pl/
- [55] Gorzelańczyk P., Jurkovič M., Kalina T., Mohanty M. 2022. Forecasting the road accident rate and the impact of the Covid 19 on its frequency in the Polish provinces. Communications 24(4)A 216-A231. https://doi.org/10.26552/com.C.2022.4.A216-A231
- [56] Gorzelańczyk, P. (2022). Change in the Mobility of Polish Residents during the Covid-19 Pandemic. Communications - Scientific letters of the University of Zilina, 24(3), A100-111. doi: 10.26552/com.C.2022.3.A100-A111
- [57] Jurkovic, M., Gorzelanczyk, P., Kalina, T., Jaros, J. & Mohanty, M. (2022). Impact of the COVID-19 pandemic on road traffic accident forecasting in Poland and Slovakia. Open Engineering, 12(1), 578-589. https://doi.org/10.1515/eng-2022-0370
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02d6c13c-0610-4e06-b437-187a3cb86aad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.