Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the numerical evaluation of mixed stress intensity factors (SIFs) and non-singular terms of William's series (T-stress) of functionally graded materials (FGMs) using three-dimensional extended finite element method (3D-XFEM). Four-point bending specimen with crack perpendicular to material gradation have been used in this investigation in order to study the effect of some parameters (crack position, crack size, specimen thickness) on the failure of FGMs materials. The fracture parameters (KI KII, phase angle ψ and T-stress) obtained by the present simulation are compared with available experimental and numerical results. An excellent correlation was found of the 3D-XFEM simulations with those available in the literature. From the numerical results, a fitting procedure is performed in order to propose an analytical formulation and subsequently are validated against the 3D-XFEM results.
Wydawca
Czasopismo
Rocznik
Strony
33--46
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- Laboratory LPQ3M, BP 763,University of Mascara, Mascara 29000, Algeria
autor
- Laboratory LPQ3M, BP 763,University of Mascara, Mascara 29000, Algeria
autor
- Laboratory LPQ3M, BP 763,University of Mascara, Mascara 29000, Algeria
autor
- Department of Mechanical Engineering, University of Tiaret, Algeria
autor
- Laboratory LPQ3M, BP 763,University of Mascara, Mascara 29000, Algeria
Bibliografia
- 1. Marur P., Tippur H., Evaluation of Mechanical Properties of Functionally Graded Materials. Journal of Testing and Evaluation 26, 6, 539-545, 1998. https://doi.org/10.1520/JTE12112J
- 2. Marur PR, Tippur H.V., Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. International Journal of Solids and Structures, 37, 38, 5353-5370, 2000. https://doi.org/10.1016/S0020-7683(99)00207-3
- 3. Rousseau C.E, Tippur H.V., Compositionally graded materials with cracks normal to the elastic gradient. Acta Materialia, 48(16), 4021-4033, 2000. https://doi.org/10.1016/S1359-6454(00)00202-0
- 4. Carpinteri A, Paggi M, Pugno N., An analytical approach for fracture and fatigue in functionally graded materials. International Journal of Fracture, (47), 141-535. 2006. https://doi.org/10.1007/s10704-006-9012-y
- 5. Tilbrook M.T., Rutgers L, Moon R.J., Hoffman M. Fatigue crack propagation resistance in homogeneous and graded alumina-epoxy composites. International Journal of Fatigue, (29), 158–67, 2007. https://doi.org/10.1016/j.ijfatigue.2006.01.015
- 6. Bhardwaj G, Singh I.V., Mishra B.K., Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA. Computer Methods in Applied Mechanics and Engineering, (284), 186–229, 2015. https://doi.org/10.1016/j.cma.2014.08.015
- 7. Bhardwaj G., Singh I.V., Mishra B.K., Bui T.Q., Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Composite Structures, (126), 347–359, 2015. https://doi.org/10.1016/j.compstruct.2015.02.066
- 8. Ferreira A.D., Novoa P.R., Marques A.T., Multifunctional Material Systems: A state-of-the-art review. Composite Structures, 151, 3-35, 2016. https://doi.org/10.1016/j.compstruct.2016.01.028
- 9. Swaminathan K., Sangeetha D.M., Thermal analysis of FGM plates - A critical review of various modeling techniques and solution methods. Composite Structures, 160, 43-60, 2017. https://doi.org/10.1016/j.compstruct.2016.10.047
- 10. Ozturk M., Erdogan F., Mode I crack problem in an inhomogeneous orthotropic medium. International Journal of Engineering Science, 35, 9, 869-883, 1997. https://doi.org/10.1016/S0020-7225(97)80005-5
- 11. Ozturk M., Erdogan F., The Mixed Mode Crack Problem in an Inhomogeneous Orthotropic Medium. International Journal of Fracture, 98, 243–261, 1999. https://doi.org/10.1023/A:1018352203721
- 12. Gu P., Dao M., Asaro R.J., A Simplified Method for Calculating the Crack-Tip Field of Functionally Graded Materials Using the Domain Integral. Journal of Applied Mechanics, 66(1), 101-108, 1999. https://doi.org/10.1115/1.2789135
- 13. Kumar B., Sharm K., Kumar D., Evaluation of Stress Intensity Factor in Functionally Graded Material (FGM) Plate under Mechanical Loading. December 2015. Conference: The Indian Society of Theoretical and Applied Mechanics (ISTAM)At: MNIT, JAIPURVolume: 58th Conference: Indian Society of Theoretical and Applied Mechanics
- 14. Kim J.H., Paulino G.H., The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. International Journal of Solids and Structures, 40, 3967-4001, 2003. https://doi.org/10.1016/S0020-7683(03)00176-8
- 15. Kim J.H., Paulino G.H., On Fracture Criteria for Mixed-Mode Crack Propagation in Functionally Graded Materials. Mechanics of Advanced Materials and Structures, 14, 227–244, 2007 https://doi.org/10.1080/15376490600790221
- 16. Gu P., Asaro R.J., Cracks in functionally graded materials. International Journal of Solids and Structures, 34(1), 1-17, 1997. https://doi.org/10.1016/0020-7683(95)00289-8
- 17. Dag S., Ilhan K.A., Mixed-mode fracture analysis of orthotropic functionally graded material coatings using analytical and computational methods. Journal of Applied Mechanics, 75(5) :051104, 2008. https://doi.org/10.1115/1.2932098
- 18. Hosseini S.S., Bayesteh H., Mohammadi S., Thermo-mechanical XFEM crack propagation analysis of functionally graded materials. Materials Science & Engineering A, 561, 285–302, 2013. https://doi.org/10.1016/j.msea.2012.10.043
- 19. Rao B.N., Rahman S., Mesh-free analysis of cracks in isotropic functionally graded materials. Engineering Fracture Mechanics. 70, 1, 1-27, 2003. https://doi.org/10.1016/S0013-7944(02)00038-3
- 20. Gayen D., Tiwari R., Chakraborty D., Static and dynamic analyses of cracked functionally graded structural components: A review. Composites Part B: Engineering, 173: 106982, 2019. https://doi.org/10.1016/j.compositesb.2019.106982.
- 21. Belytschko T., Black T., Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45, 601–620, 1999. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5
- 22. Singh I.V., Mishra B.K., Bhattacharya S., Patil R.U., The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue, 36, 109–119, 2012. https://doi.org/10.1016/j.ijfatigue.2011.08.010
- 23. Walters M.C., Paulino G.H., Dodds R.H., Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading. International Journal of Solids and Structures, 41, 1081–118, 2004. https://doi.org/10.1016/j.ijsolstr.2003.09.050
- 24. Yildirim B., Dag S., Erdogan F., Three-dimensional fracture analysis of FGM coatings under thermomechanical loading. International Journal of Fracture, 132, 369–395, 2005. https://doi.org/10.1007/s10704-005-2527-9
- 25. Walters M.C., Paulino G.H., Dodds R.H., Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids. Journal of Engineering Mechanics, 132, 1–15, 2006. https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-399(2006)
- 26. Ayhan A.O., Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements. International Journal of Solids and Structures, 44, 8579–8599, 2007. https://doi.org/10.1016/j.ijsolstr.2007.06.022
- 27. Ayhan A.O., Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements. International Journal of Solids and Structures, 46, 796–810, 2009. https://doi.org/10.1016/j.ijsolstr.2008.09.026
- 28. Sladek J., Sladek V., Solek P., Elastic analyses in 3D anisotropic functionally graded solids by the MLPG. CMES: Computer Modeling in Engineering & Sciences, 43, 223–252, 2009. doi:10.3970/cmes.2009.043.223
- 29. Zhang C., Cui M., Wang J., Gao X.W., Sladek J., Sladek V., 3D crack analysis in functionally graded materials. Engineering Fracture Mechanics, 78(3), 585–604, 2011. https://doi.org/10.1016/j.engfracmech.2010.05.017
- 30. Eischen J.W., Fracture of nonhomogeneous materials. International Journal of Fracture, 34, 3-22, 1987. https://doi.org/10.1007/BF00042121
- 31. Becker T.L. Jr, Cannon R.M., Ritchie R.O., Finite crack kinking and T-stresses in functionally graded materials, International Journal of Solids and Structures, 38, 5545-5563, 2001. https://doi.org/10.1016/S0020-7683(00)00379-6
- 32. Gupta M., Alderliesten R.C., Benedictus R., A review of T-stress and its effects in fracture mechanics, Engineering Fracture Mechanics, 134, 218-241, 2015. https://doi.org/10.1016/j.engfracmech.2014.10.013
- 33. Fleming M., Chu Y. A., Moran B. Belytschko T., Enriched element-free galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering, 40, 1483–1504, 1997. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
- 34. Melenk, J., Babuska I., The Partition of Unity Finite Element Method: Basic Theory and Applications. Computer Methods in Applied Mechanics and Engineering, 139, 289-314, 1996. https://doi.org/10.1016/S0045-7825(96)01087-0
- 35. ANSYS 19.0, Ansys Inc. Documentation, ANSYS Elements Reference, (2019).
- 36. Ma L., Wang Z.Y., Wu L.Z., Numerical Simulation of Mixed-Mode Crack Propagation in Functionally Graded Materials. Materials Science Forum, 631-632, 121-126, 2010. https://doi.org/10.4028/www.scientific.net/MSF.631-632.121
- 37. Ooi E.T., Natarajan S., Song C., Tin-Loi F., Crack propagation modelling in functionally graded materials using scaled boundary polygons. International Journal of Fracture, 192, 87-105, 2015. https://doi.org/10.1007/s10704-015-9987-3
- 38. Chen X., Luo T., Ooi ET., Ooi E.H., Song C., A quadtree-polygonbased scaled boundary finite element method for crack propagation modeling in functionally graded materials. Theoretical and Applied Fracture Mechanics, 94, 120-133, 2018. https://doi.org/10.1016/j.tafmec.2018.01.008
- 39. Larsson, S.G., Carlsson A.J., Influence of non–singular stress terms and specimen geometry on small–scale yielding at crack tips in elastic–plastic materials. Journal of the Mechanics and Physics of Solids, 21, 263–277, 1973. https://doi.org/10.1016/0022-5096(73)90024-0
- 40. Boggarapu V., Gujjala R., Ojha S., Acharya S., Babu P.V., Chowdary S., Gara D.K., State of the art in functionally graded materials. Composite Structures, 262, 2021, 113596. https://doi.org/10.1016/j.compstruct.2021.113596
- 41. Zheng H., Sladek J., Sladek V., Wang S.K., We P.H., Fracture analysis of functionally graded material by hybrid meshless displacement discontinuity method. Engineering Fracture Mechanics, 247, (2021), 107591. https://doi.org/10.1016/j.engfracmech.2021.107591
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02d154d9-1c8f-424a-8519-4395cbe4ed4b