PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The ESA’S Scientific projects for Galileo Satellites 5 and 6 with eccentric orbits

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The experts of the ESA Galileo Scientific Advisory Committee (GSAC) have been involved in the analysis and technical discussions on the possibility of using Galileo Satellites 5 and 6 with eccentric orbits to support some Fundamental Physics experimentation, especially to perform a test of the gravitational redshift, a part of Einstein Equivalence Principle (EEP) General Relativity (specifically testing the LPI, Local Position Invariance). The gravitational redshift was performed with Gravity Probe-A (GP-A) in 1980 with the accuracy of 1.4 x 10-4. The analysis made by independent experts showed that using Galileo Satellite 5 data for one year (and if possible also Sat 6), in their final corrected orbits with an eccentricity of about 0.15, the accuracy could be improved by a factor of 5 and is optionally estimated to be even higher. Moreover, as noted by the involved experts, these tests are of high scientific relevance, as many alternative theories of gravitation predict violations of the Einstein Equivalence Principle at some level of the accuracy. The final recommendation of the GSAC provides the ESA with the possibility of establishing a scientific project activity, named as GREAT with two research groups (ZARM/SYRTE). The main objectives of this scientific project and expected results of gravitational redshift improvement are discussed.
Rocznik
Tom
Strony
125--134
Opis fizyczny
Bibliogr. 19 poz., fig., img.
Twórcy
autor
  • Polish Air Force Academy, Faculty of Aeronautics
Bibliografia
  • 1. Altschul, B., Bailey, Q. G., Blanchet, L., Bongs, K., Bouyer, P., Cacciapuoti, L., Capozziello, S., Gaaloul, N., Giulini, D.,Hartwig, J., Iess, L., Jetzer, P., Landragin, A., Rasel, E., Reynaud, S., Schiller, S., Schubert, C., Sorrentino, F., Sterr, U.,Tasson, J. D., Tino, G. M., Tuckey, P., and Wolf, P. (2015). Quantum tests of the Einstein Equivalence Principle with the STE-QUEST space mission. Advances in Space Research, 55(1):501{524.
  • 2. Botermann, B., Bing, D., Geppert, C., Gwinner, G., Hansch, T. W., Huber, G., Karpuk, S., Krieger, A., K• uhl, T.,Nortershauser, W., Novotny, C., Reinhardt, S., Sanchez, R., Schwalm, D., Stohlker, T., Wolf, A., and Saatho, G. (2014). Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativistic Speed. Phys. Rev. Lett., 113(12):120405.
  • 3. Cacciapuoti, L. and Ch. Salomon (2009). Space clocks and fundamental tests:The ACES experiment. In: Eur. Phys. J. - Spec. Top. 172.1, pp. 57–68.
  • 4. Delva, P., Hees, A., Bertone, S., Richard, E., and Wolf, P. (2015). Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6. Accepted in Classical and Quantum Gravity (Fast Track Communication) {Arxiv 1508.06159. Advanced concepts for the Galileo time reference, TN presented to GSAC14, May 2014.
  • 5. Delva, P., Kostic, U. and Cadez, A., Numerical modeling of a Global Navigation Satellite System in a general relativistic framework. Advances in Space Research, 47:370–379, 2011. DOI: 10.1016/j.asr. 2010.07.007.
  • 6. Delva, P., Cadez, A., Kostic, U. and Carloni, S., A dynamical reference system for science and navigation. Proceedings of the 3rd Int. Colloquium – Galileo Science, 2011.
  • 7. Delva, P. et al. 2015. An SLR campaign on Galileo satellites 5 and 6 for a test of the gravitational redshift – the GREAT experiment. Technical Notes,cddis.gsfc. nasa.gov/2015_Technical.../1.14_Delva_paper.pdf.
  • 8. Guena, J. et al. (2012). Improved Tests of Local Position Invariance Using Rb87 and Cs133 Fountains. In: Phys. Rev. Lett. 109.8, 080801, p. 080801.
  • 9. Hackmann E., Herrmann S., Lämmerzahl C., List M., Merkle F., Perlick V., Rievers B., (2015). Science with Galileo 5 + 6. ESA GSAC Meeting Paris, 26 November 2014.
  • 10. Litvinov, D. et al. (2015). Gravitational Redshift Experiment with the Space Radio Telescope RadioAstron. In: Proceedings of the Journ´ees 2014 ”Systemes de reference spatio-temporels”. Ed. by Z. Malkin and N. Capitaine. Pulkovo Observatory, pp. 71–74.
  • 11. Montenbruck, O., P. Steigenberger, and U. Hugentobler (2014). Enhanced solar radiation pressure modeling for Galileo satellites. In: Journal of Geodesy 89.3, pp. 283–297.
  • 12. Oszczak B., (2014). Solution for Inter-Satellite Linked Space-Time Network Using Reference and Transition Point Indicators, Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2014), September 8-12, 2014, Tampa, FL, Pages: 2363-2370.
  • 13. Rosenband, T. et al. (2008). Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place. In: Science 319, pp. 1808.
  • 14. Svehla, D. (2010). A new test of general theory of relativity by probing the gravitational redshift using H-maser onboard the GALILEO GIOVE-B satellite. In: 38th COSPAR Scientific Assembly. Held 18-15 July 2010, in Bremen, Germany, p. 3827.
  • 15. Vessot, R. F. C. and M. W. Levine (1979). A test of the equivalence principle using a space-borne clock. In: Gen. Relativ. Gravit. 10, pp. 181–204.
  • 16. Vessot, R. F. C., M. W. Levine, et al. (1980). Test of relativistic gravitation with a space-borne hydrogen maser. In: Phys. Rev. Lett. 45, pp. 2081–2084.
  • 17. Will, C. M. (1993). Theory and Experiment in Gravitational Physics. Cambridge University Press.
  • On - line resources:
  • 18. http://galileognss.eu/galileo-5-and-6-recovery/
  • 19. http://www.esa.int/Our_Activities/Navigation/The_future_Galileo/Launching_Galileo
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02cefdb9-9e5a-4648-ab28-55a8ac2bdace
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.