Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recovered metallic waste can be used in additive manufacturing as a feedstock if the subsequent steps of the waste-to-product process are sufficiently mastered. In this study, impact of recycling of Z100 duplex steel mixed with 316L steel on the resulting powders microstructure and chemical composition was investigated. The utility of the original method of recycling stainless steels into a high-grade powder suitable for additive techniques has been demonstrated. By examining three gradations of powders, namely 20-50 μm, 50-100 μm and 125-250 μm, differences in selected properties in relation to the average particle size are shown. The results suggest that with increasing the particle diameter, fine-crystalline γ-austenite is favoured to precipitate at the boundaries and within the volume of the originally formed large δ-ferrite grains. It is reflected by a decrease of δ/γ fraction ratio from 0.64 in the 20–50 μm powders to 0.20 in the 125-250 μm, respectively. Obtained results indicate non-diffusional, shear or semi-shear character of δ → γ + δ phase transformation. The resulting fine-crystalline austenite is characterised by a significant dislocation density, which induces dislocation strengthening effect, responsible for an increase in Vickers hardness from 145 HV and Young's modulus from 29 GPa in the 20-50 μm group to 310 HV and 146 GPa in the 125-250 μm fraction, respectively.
Czasopismo
Rocznik
Tom
Strony
art. e246, 1--13
Opis fizyczny
Bibliogr. 43 poz., il., tab., wykr.
Twórcy
autor
- Łukasiewicz Research Network –Krakow Institute of Technology, Kraków, Poland
- AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
autor
- Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
autor
- Łukasiewicz Research Network – Krakow Institute of Technology, Kraków, Poland
autor
- Łukasiewicz Research Network – Krakow Institute of Technology, Kraków, Poland
autor
- Łukasiewicz Research Network – Krakow Institute of Technology, Kraków, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
autor
- Fundación Tekniker, Polo Tecnológico de Eibar, Eibar (Gipuzkoa), Spain
autor
- Fundación Tekniker, Polo Tecnológico de Eibar, Eibar (Gipuzkoa), Spain
- Łukasiewicz Research Network – Krakow Institute of Technology, Kraków, Poland
autor
- Łukasiewicz Research Network – Krakow Institute of Technology, Kraków, Poland
autor
- AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków
Bibliografia
- 1. Tuck CC. Iron and steel scrap, U.S. geological survey, mineral commodity summaries. 2022;1-2.
- 2. Bobba S, Carrara S, Huisman J, Mathieux F, Pavel C. Critical raw materials for strategic technologies and sectors in the EU: a foresight study. 2020.
- 3. Raabe D, Ponge D, Uggowitzer PJ, Roscher M, Paolantonio M, Liu C, Antrekowitsch H, Kozeschnik E, Seidmann D, Gault B, de Geuser F, Deschamps A, Hutchinson C, Liu C, Li Z, Prangnell P, Robson J, Shanthraj P, Vakili S, Sinclair C, Bourgeois L, Pogatscher S. Making sustainable aluminum by recycling scrap: the science of “dirty” alloys. Prog Mater Sci. 2022;128:1-150. https:// doi. org/ 10. 1016/j. pmats ci. 2022. 100947.
- 4. Panasiuk D, Daigo I, Hoshino T, Hayashi H, Yamasue E, Tran DH, Sprecher B, Shi F, Shatokha V. International comparison of impurities mixing and accumulation in steel scrap. J Ind Ecol.2022;26:1040-50. https://doi.org/10.1111/jiec.13246.
- 5. Daigo I, Tajima K, Hayashi H, Panasiuk D, Takeyama K, Ono H, Kobayashi Y, Nakajima K, Hoshino T. Potential influences of impurities on properties of recycled carbon steel. ISIJ Int. 2021;61:498-505. https://doi.org/10.2355/isiji ntern ation al. ISIJI NT-2020-377.
- 6. Liou H-Y, Pan Y-T, Hsieh R-I, Tsai W-T. Effects of alloying elements on the mechanical properties and corrosion behaviors of 2205 duplex stainless steels. JMEPEG. 2001;10:231-41.
- 7. Shibata K, Seo S-J, Kaga M, Uchino H, Sasanuma A, Asakura K, Nagasaki C. Suppression of surface hot shortness due to Cu in recycled steels. Mater Trans. 2002;43:292-300. https://doi.org/10.2320/matertrans.43.292.
- 8. Yeşiltepe S, Şeşen MK. High-temperature oxidation kinetics of Cu bearing carbon steel. SN Appl Sci. 2020. https:// doi. org/ 10.1007/s42452-020-2473-1.
- 9. Wang K, Guo L, Liu T, Huang A, Zhao Y, Wang W, Peng J. Effect of Cu on the corrosion behavior of 304 stainless steel. Crystals (Basel). 2022;13:31. https://doi.org/10.3390/cryst13010031.
- 10. Yin L, Sridhar S. Effects of small additions of tin on high-temperature oxidation of Fe–Cu–Sn alloys for surface hot shortness. Metall Mater Trans B Process Metall Mater Process Sci. 2010;41:1095-107. https:// doi.org/10.1007/s11663-010-9418-9.
- 11. Gunn RN. Duplex stainless steels. In: Woodhead publishing series in metals and surface engineering. New York: Woodhead Publishing, 1997.
- 12. de Paula Inacio LK, Wolf W, de Leucas BCB, Stumpf GC, Santos DB. Microtexture evolution of sigma phase in an aged fine grained 2205 duplex stainless steel. Mater Charact. 2021;171:1-9. https:// doi.org.10.1016/j.match.ar.2020.110802.
- 13. Wang C, Wu Y, Guo YA, Guo J, Zhou L. Precipitation behavior of sigma phase and its influence on mechanical properties of a Ni-Fe based alloy. J Alloys Compd. 2019;784:266-75.
- 14. Dudziak T, Olbrycht A, Polkowska A, Boron L, Skierski P, Wypych A, Ambroziak A, Krezel A. High temperature coatings from post processing Fe-based chips and Ni-based alloys as a solution for critical raw materials. In: IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing, 2018. https://doi. org/ 10.1088/1757-899X/329/1/012010.
- 15. Dudziak T. Sposób wytwarzania proszków w procesie recyclingu wiórów stalowych, PL 237562 B1, 2017.
- 16. Dudziak T. Sposób wytwarzania proszków w procesie recyclingu wiorów niklowych, PL 241473 B1, 2017.
- 17. De AK, Murdock DC, Mataya MC, Speer JG, Matlock DK. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scr Mater. 2004;50:1445-9. https:// doi. org/ 10.1016/j. scrip tamat. 2004. 03. 011.
- 18. ASTM E975-13, Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation. ASTM International. (n.d.). https://doi.org/10.1520/E0975/13.
- 19. Hammar O, Svensson U. Influence of steel composition on segregation and microstructure during solidification of austenitic stainless steels. In: Solidification and casting of metals. London: The Metals Society; 1979. p. 401-10.
- 20. Knyazeva M, Pohl M. Duplex steels: part I: genesis formation, structure. Metallogr Microstruct Anal. 2013;2:113–21. https://doi.org/10.1007/s13632- 013-0066-8.
- 21. Zhu C, Wang W, Zeng J, Lu C, Zhou L, Chang J. Interactive relationship between the superheat, interfacial heat transfer, deposited film and microstructure in strip casting of duplex stainless steel. ISIJ Int. 2019;59:880-8. https://doi.org.10.2355/isiji ntern ation al.ISIJINT-2018-747.
- 22. Munoz JA, Chand M, Signorelli JW, Calvo J, Cabrera JM. Strengthening of duplex stainless steel processed by equal channel angular pressing (ECAP). Int J Adv Manuf Technol. 2022. https://doi.org/10.1007/s00170-022-10311-2.
- 23. Wang N, Wei B. Rapid solidification behaviour of Ag-Cu-Ge ternary eutectic alloy. Mater Sci Eng A. 2001;307:80-90. https://doi.org/10.1016/S0921-5093(00) 01954-7.
- 24. Tourret D, Reinhart G, Gandin CA, Iles GN, Dahlborg U, Calvo-Dahlborg M, Bao CM. Gas atomization of Al-Ni powders: solidification modeling and neutron diffraction analysis. Acta Mater.2011;59:6658-69. https://doi.org/10.1016/j.actamat.2011. 07. 023.
- 25. Dai Y, Yang M, Song C, Han Q, Zhai Q. Solidification structure of C2.08Cr25.43Si1.19Mn0.43Fe70.87 powders fabricated by high pressure gas atomization. Mater Charact. 2010;61:116-22.
- 26. Liao L, Chumbley S. Influence of cooling rate on the ferrite prediction diagram of duplex stainless steel castings. Metall Mater Trans A Phys Metall Mater Sci. 2019;50:2435-42. https://doi.org/10.1007/s11661-019-05166-4.
- 27. Wright RN. Relevant aspects of carbon and low-alloy steel metallurgy. In: Wire technology. Amsterdam: Elsevier; 2016. p. 201-33. https://doi.org/10.1016/ b978-0-12- 802650 2 00014-5.
- 28. Zhang D, Liu A, Yin B, Wen P. Additive manufacturing of duplex stainless steels - a critical review. J Manuf Process. 2022;73:496-517. https://doi.org/10.1016/j.jmapro.2021.11.036.
- 29. Onink M, Brakrnan C, Tichelaar F, Mittemeijer E, van der Zwaag S, Root J, Konyer N. The lattice parameters of austenite and ferrite temperature. Scr Metall Mater. 1993;29:1011-6.
- 30. Hsieh CC, Lin DY, Chang TC. Microstructural evolution during the δ/σ/γ phase transformation of the SUS 309LSi stainless steel after aging under various nitrogen atmospheric ratios. Mater Sci Eng, A. 2008;475:128–35. https://doi.org/10.1016/j.msea. 2007.04.028.
- 31. Koseki T, Flemings MC. Solidification of undercooled Fe–Cr–Ni alloys: part I thermal behavior. Metall Mater Trans A. 1995;26:2991-9. https:// doi.org/10.1007/ BF026 63873.
- 32. Koseki T, Flemings MC. Solidification of undercooled Fe–Cr–Ni alloys: part II. microstructural evolution. Metall Mater Trans A. 1996;27:3226–40. https:// doi.org/10.1007/ BF026 69655.
- 33. Berns H, Theisen W. Ferrous materials: steel and cast iron. Berlin: Springer; 2008. https://doi.org/10.1007/978-3-540-71848-2.
- 34. Zhu C, Zeng J, Wang W, Chang S, Lu C. Mechanism of δ → δ +γ phase transformation and hardening behavior of duplex stainless steel via sub-rapid solidification process. Mater Charact. 2020. https://doi.org/10.1016/j. matchar. 2020.110679.
- 35. Haghdadi N, Cizek P, Hodgson PD, Tari V, Rohrer GS, Beladi H. Effect of ferrite-to-austenite phase transformation path on the interface crystallographic character distributions in a duplex stainless steel. Acta Mater. 2018;145:196–209. https://doi.org/10.1016/j.actamat. 2017.11 057.
- 36. Schaeffler AL. Construction diagram for stainless steel weld metal. Metal Progress. 1949;56:680-680B.
- 37. Knyazeva M, Pohl M. Duplex steels. Part II: carbides and nitrides. Metallogr Microstruct Anal. 2013;2:343-51. https://doi.org/10.1007/s13632-013-0088-2.
- 38. Lee BH, Lee HJ, Kang DW, Lee HW. The effect of silicon content on the pitting corrosion of duplex stainless steel weldment, 2014.www.archi vesmse.org.
- 39. AlaouiMouayd A, Koltsov A, Sutter E, Tribollet B. Effect of silicon content in steel and oxidation temperature on scale growth and morphology. Mater Chem Phys. 2014;143:996-1004. https://doi.org/10.1016/j.match emphys.2013.10.037.
- 40. Wang XF, Yang XP, Guo ZD, Zhou YC, Song HW. Nanoindentation characterization of mechanical properties of ferrite and austenite in duplex stainless steel. Adv Mat Res. 2007;26-28:1165-70. https://doi.org/10.4028/www.scientific.net/ amr. 26-28.1165.
- 41. Simmons JW, Overview A. High-nitrogen alloying of stainless steels. Mater Sci Eng, A. 1996;207:159-69.
- 42. Zhang Y, Kang R, Dong Z, Bao Y, Guo D, Bai Q. Effect of dislocation density distribution in work-hardened layer on cutting characteristics in the multi-cutting of 49Fe49Co2V alloy. J Manuf Process. 2023;85:1187-96. https://doi.org/10.1016/j.jmapro.2022.12.043.
- 43. Li W, Vittorietti M, Jongbloed G, Sietsma J. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel. J Mater Sci Technol. 2020;45:35-43. https://doi.org/10.1016/j.jmst.2019.11.025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02ce4c0b-4924-4121-8145-b6377a07dd69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.