PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorptive removal of aqueous phase crystal violet dye by low-cost activated carbon obtained from Date palm (L.) dead leaflets

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Adsorpcyjne usuwanie wodnej fazy fioletu krystalicznego z wody za pomocą taniego aktywowanego węgla uzyskanego z martwych liści Palmy daktylowej (L)
Języki publikacji
EN
Abstrakty
EN
Up to now, water pollution is still one of the important issues and challenges worldwide, due to its environmental, economic and human life impacts. It is also remains a challenge to environment scientists and technologists. Nowadays, the textile dyeing industry is considered one of the largest water consuming industries and produces large volumes of colored wastewater in its dyeing and finishing process. In this study, date palm tree leaflets (DPL) has been selected as a natural renewable source for the production of a new activated carbon (AC) utilized for the removal of crystal violet (CV) from water-dye system using a batch mode technique. The experiments studies were carried out at different initial dye concentration, contact time, adsorbent dose, and pH. The sorption exhibited high efficiency for CV adsorption and the equilibrium state could be achieved in 30 minutes for the different CV initial concentrations. CV removal was proved to increase with the increase in ACDL dose, pH, and contact time. Agitation rate and total volume of the reaction mixture were kept at 200 rpm and 20 mL respectively. The applicability of Langmuir and Freundlich isotherm equations was investigated and it was found that experimental data fitted very well to both Freundlich and Langmuir models. The maximum adsorption capacity (qm) was found to be 36.63 mg/g.
PL
Poziom zanieczyszczenia wody jest jednym z najważniejszych problemów do rozwiązania i wyzwań dla technologii remediacyjnych. Także przemysł farbiarski ma wpływ na zanieczyszczenie wód powierzchniowych ze względu na wytwarzanie dużych ilości ścieków powstałych w procesie barwienia i wykańczania materiałów. Liście palmy daktylowej zostały wybrane jako naturalne, odnawialne źródło materiału organicznego do wytwarzania węgla aktywnego, który może być wykorzystany w procesie usuwania fioletu krystalicznego. W trakcie badań zbadano wpływ stężenia barwnika, czasu kontaktu, masy złoża węgla aktywnego oraz pH wody na efektywność procesu usuwania barwnika. Na podstawie uzyskanych wyników można stwierdzić, że izotermy Freundlicha i Langmuira dobrze opisują przebieg procesu adsorpcji fioletu krystalicznego na złożu węgla aktywnego uzyskanego z martwych liści palmy daktylowej.
Rocznik
Strony
611--631
Opis fizyczny
Bibliogr. 76 poz., fot. kolor., 1 rys., wykr.
Twórcy
autor
  • Gdańsk University of Technology, Facultuy of Chemistry, Department of Analytical Chemistry, ul. G. Narutowicza 11/12, 80-233 Gdańsk
  • Gdańsk University of Technology, Facultuy of Chemistry, Department of Analytical Chemistry, ul. G. Narutowicza 11/12, 80-233 Gdańsk
autor
  • The Jan Kochanowski University, Faculty of Mathematics and Natural Science, Department of Physical Chemistry, ul. Świętokrzyska 15G, 25-406 Kielce
Bibliografia
  • [1] Gupta V.K., Ali I., Environmental Water Advances in Treatment, Remediation and Recycling, 2013.
  • [2] Grag V.K., Kumar R., Gupta V.K., Removal of Malachite Green dye from aqueous solution by adsorption using agro-industries waste: a case study of Phosppis cineraria, Dyes Pigm. 2004, 62, 1-10.
  • [3] Sayan E., Optimization and modeling of de-colorization and COD reduction of reactive dye solutions by ultrasound-assisted adsorption, Chem. Eng. J. 2006, 119, 175-181.
  • [4] Kadirvelu K., Namsivayam C., Activated carbon from coconut coirpith as metal adsorbent: Adsorption of C(II) from aqueous solution, Adv. Environ. Res. 2003, 7, 471-478.
  • [5] Crini G., Kinetics and equilibrium studies on the removal of cationic dyes from aqueous solution by sorption onto a cyclodextrin, Poly. Dyes and Pigm. 2008, 77, 415-426.
  • [6] Allen S.J., Koumanova B., De-colourization of water/wastewater using adsorption (Review), J. Univ. Chem. Technol. Metal. 2005, 40, 175-192.
  • [7] Senthilkumar P., Ramalingam S., Senthamarai C., Niranjanaa M., Vijayalakshmi M., Sivanesan M., Adsorption of dye from aqueous solution by cashew nut shell studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Desalination 2010, 26, 52-60.
  • [8] Rafatullah M., Sulaiman O., Hashim R., Ahmad A., Adsorption of methylene blue on low-cost adsorbents: A review, J. Hazard. Mater. 2010, 177, 70-80.
  • [9] Hazrat A., Muhammed S.K., Bio-sorption of crystal violet from water on leaf biomass of Catatropis procera, Environ. Sci. Technol. 2008, 1(3), 143-150.
  • [10] El Qada E.N., Allen S.J., Walker G.M., Adsorption of basic dyes from aqueous solution onto activated carbons, Chem. Eng. J. 2008, 135, 174-184.
  • [11] Casaletto A., Ferreira J., Tambourgi B., Morase R., Silverira E., Biodegradation of textile azo ayes by Shewanella putrefaciens (CCT 1967), Chem. Eng. Trans. 2011, 24, 71-876.
  • [12] Fan L., Zhoum Y., Yang, W., Chen G., Yang F., Dyes Pigm. 2008, 76, 440-446.
  • [13] Zourro A., Fidaleo M., Lavecchia R. Response surface methodology (RSM) analysis of photodegradation of sulfonated diazo dye reactive green 19 by UV/H2O2 process, J. Environ. Mange. 2013, In Press, DOI: 10.1016/j.jenvman, 2013, 03.023.
  • [14] Wu J.S., Liu C.H., Chu K.H., Suen S.Y., Removal of cationic dye methyl violet 2B from water by cation exchange membranes, J. Membr. Sci. 2008, 309 239-245.
  • [15] Saad S.A., Isa K.Md., Bahari R., Chemically modified sugarcane bagasse as a potentially low-cost biosorbent for dye removal, Desalination 2010, 264, 123-128.
  • [16] Lussier M.G., Shull C., Miller J., Activated Carbon from Cherry Stones 1994, 32(8), 1493-1498.
  • [17] Ahmed A.A., Hameed B.H., Aziz N., Adsorption of direct dye on palm ash: Kinetics and equilibrium modeling, J. Hazard. Mater. 2007, 141(1),70-76.
  • [18] Hameed H., Mahmoud K., Ahmed L., Sorption of basic dye from aqueous solution by pommel peel in a patch system, Coll. Surf. A 2008, 316, 78-84.
  • [19] Sharma C., Uma N., Upadhyay F.G., Adsorptive removal of a basic dye from water and wastewater by activated carbon, J. Appl. Sci. Environ. Sanit. 2009, 4, 21-28.
  • [20] Rafie R.M., Removal of heavy metals from waste water using black tea waste, Arab J. Sci. Eng. 2012, 37, 1505-1520.
  • [21] Cavas L., Karabay Z., Alyuruk H., Dogan H., Demir G., Thomas and artificial neutral network models for the fixed-bed adsorption of aethylene blue by a beach waste Posidonia Oceanic L. dead leaves, Chem. Eng. J. 2011, 171, 157- 562.
  • [22] Deniz F., Karaman S., Removal of basic red 46 dye from aqueous solution by pine tree leaves, Chem. Eng. J. 2011, 170, 67-74.
  • [23] Ashly L.P., Thirumalisamy S., Adsorption of hazardous cationic dyes from aqueous solutions onto Acacia nilotica L. leaves as an eco friendly adsorbent, Sustain. Environ. Res. 2012, 22(2), 113-122.
  • [24] Kandaswamy S. Bharathi, Srikrishna P.T. Ramesh, Fixed-bed column studies on bio-sorption of crystal violet from aqueous solution by Citrullus Lanatus and Cyperus Rotundus, Applied Water Science, DOI: 10.1007/s13201-013-0103-4, 2013, adapted from http://www.springer.com.
  • [25] Johns M.M., Marshall W.E., Toles C.A., Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics, J. Chem. Technol. Biotechnol. 1998, 71, 131-140.
  • [26] Han R.P., Zou W.H., Yu W.H., Cheng S.J., Wang Y.F., Shi J., Bio-sorption of methylene blue from aqueous solution by fallen Phoenix tree`s leaves, J. Hazard. Mater. 2007, 141, 156-162.
  • [27] Amjad H. El-Sheikh, Alan P. Newman, Hafid K. Al-daffaee, Suki Phull, Neil Cresswell, Characterization of activated carbon prepared from a single cultivar of Jordanian olive stones by chemical and physicochemical techniques, J. Anal. Appl. Pyrolysis. 2004, 71, 151-164.
  • [28] Amit Bhatnagar, Minocha, Conventional and non-conventional adsorbents for removal of pollutants from water - A review, Indi. J. Chem. Technol. 2006, 13, 203-217.
  • [29] Bansode R.R., Losso J.N., Marshall W.E., Rao R.M., Adsorption of metal ions by becan shellbased granular activated carbons, Biores. Technol. 2003, 89, 115-119.
  • [30] Thomas A.H., Jain N., Joshi H.C., Prasad S., Agricultural and agro-processing wastes as low cost adsorbents for metal removal from wastewater: A review, J. Sci. Ind. Res. 2008, 67, 647-658.
  • [31] Saudi Aramco World, 1962. Oasis Fruit. Saudi Aramco World, 13(3): 18-20, http://www.saudiaramcoworld.com/issue/196203/oasis.fruit.htm
  • [32] Barreveld W.H., Date Palm Products. Agricultural Services Bulletin No. 101, Food and Agriculture Organization of the United Nations (FAO), Rome 1993.
  • [33] El-Juhany L.I., Degradation of date palm trees and date production in Arab countries: Causes and potential rehabilitation, Austral. J. Basic and Applied Sci. 2010, 4(8), 3998-4010.
  • [34] Faostat. On-line Statistical Database of the Food and Agricultural Organization of the United Nations, Available at http://www.apps.fao.org
  • [35] Yassine El., Sophie D., Mejdi J., Gwénaelle T., Rachid S., Measurement of gaseous and particulate pollutants during combustion of date palm wastes for energy recovery, Aerosol and Air Quality Res. 2012, 12, 814-825, doi: 10.4209/aaqr.2012.03.0056.
  • [36] Bchini H., Hsayoui S., Aloui S., Gestion de la Matière Organique et Compostage des Palmes Sèches Dans le Milieu Oasien, Annales de l'INRAT 2002, 75, 299-312.
  • [37] Gouamid M., Ouahrani M.R., Bensaci M.B., Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm leaves, Energy Proc. 2013, 36, 898-907.
  • [38] Shrood O., Farag Z., Adel E., Mansour Z., Hamed A.S., Medicinal and Nutritional Values of Libyan Dates, Biotechnologies Bulletin, Vol. 2, 3rd ed., Biotechnology Research Center of Ben-Ghasheer, Tripoli 2004.
  • [39] Yasamin Majedi, Eman Alhilali, Mariam Al Nehayan, Arwa Rashed, Sarah Shwkat Ali, Nathir al Rawashdeh, Thies Thiemann, Ahmed Soliman, Treatment of Dye-Loaded Wastewater with Activated Carbon from Date Palm Leaf Wastes, World Sustainability Forum 2014 - Conference Proceedings Paper.
  • [40] Mashael A., Ghadah A., Rasmiah A., Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique, Hindawi Publishing Corporation, Journal of Chemistry 2013, Article ID 210239, 6 pages.
  • [41] Hussein F., Halbus A.F., Lafta A.J., Athab Z.H., Preparation and characterization of activated carbon from Iraqi Khestawy date palm, Hindawi Publishing Corporation, Journal of Chemistry 2015.
  • [42] Hasan S.H., Ranjana D., Talat M., Agro-industrial waste wheat bran for the bio-sorptive remediation of selenium through continuous up-flow fixed bed column, J. Hazard. Mater. 2010, 181, 1134-1142.
  • [43] Upendra K., Manas B., Fixed bed column study for Cd(II) removal from wastewater treated rice husk, J. Hazard. Mater. 2006, B129, 253-259.
  • [44] Hairul Nazirah Abdul Halim, Kelly Liew Kar Mee, Adsorption of basic red 46 by granular activated carbon in a fixed bed column, International Conference on Environment and Industrial Innovation, IPCBEE vol. 21, Singapore 2011.
  • [45] Hameed B.H., Khaiary M.I.E., Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: Broad bean peels, J. Hazard. Mater. 2008, 154, 639-648.
  • [46] Nadeem M., Shabbir M., Abdullah A., Shah S., McKay G., Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents, Chem. Eng. J. 2009, 148, 365-370.
  • [47] Subramanyam B., Das A., Linearized and non-linearized isotherm models, comparative study on adsorption of aqueous phenol solution in soil, Environ. Sci. Tech. 2009, 6, 633-640.
  • [48] Ruthven D.M., Principle of Adsorption and Desorption Process, John Wiley and Sons, New York 1984.
  • [49] Allen S.J., Gan Q., Matthews R., Johonson P.A., Comparison of optimized isotherm models for basic dye adsorption by Kudzu, Bioresour. Technol. 2003, 88, 143-152.
  • [50] Satish P., Vaijanta D., Sameer R., Naseems P., Kinetics of adsorption of Crystal Violet from aqueous solution using different natural materials, Inter. J. Environ. Sci. 2011, 1(6).
  • [51] Bharathi K.S., Ramesh S.P., Equilibrium, thermodynamic and kinetics studies on adsorption of basic dye by Citrulus Lanatus Rind, Iranica J. En. Environ. 2012, 3(1), 23-24.
  • [52] Muhammed Ahmed, Misbahul A. Khan, Umar Farooq, Makshoof Athar, Carbonized green tea dredge, a potential adsorbent for removal of remazol brilliant yellow dye, J. Mater. Environ. Sci. 2012, 3(1), 149-156.
  • [53] Sulyman M., Namieśnik J., Gierak A., Utilization of new activated carbon from an oak leaves for removal of crystal violet from aqueous solution, Pol. J. Environ. Stud. 2014, 23(6), 323-332.
  • [54] Phussadee P., Apipreeya K., Prasert P., Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark, J. Environ. Sci. 2008, 20, 1028-1034.
  • [55] Timur S., Cem Kantarli I., Onenc S., Yanik J., Characterization and application of activated carbon produced from oak cups pulp, J. Analyt. App. Pyrol. 2010, 89, 129-136.
  • [56] Norasyikin M.M., Mohd A.A.M., Yacob A.R., Hassa M.A., Physical activation of Saudi Arabia date palm tree`s foliar, fond and thorn, J. IEEE Explorer, MIMT Jan, 2010.
  • [57] Kalderis D., Bethanis S., Parakeva P., Diamadopoulos D., Production of activated carbon from bagase and rice husk by a singles stage chemical activation at low retention times, J. Biores. Technol. 2008, 99, 6809-6816.
  • [58] Hayashi J., Horikawa T., Takeda I., Farid N.A., Preparing activated carbon from various nutshells by chemical activation with K2CO3, J. Carbon 2002, 40, 2380-2386.
  • [59] Li W., Peng J., Zhang L., Yang K., Xia H., Guo S., Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonixed coconut shell char, Industr. Crops & Produc. 2008, 28, 1085-1097.
  • [60] Chao H., Runhu Z., Li L., Xiaoyung Z., Adsorption of phenol from aqueous solution using activated carbon prepered from crofton weed, Desalin. Wat. Treat. 2012, 37, 230-237.
  • [61] Rammel R.S., Zatiti S.A., El-Jamal M.M., Biosorption of crystal violet by Chaetophora Elegans Algae, J. the University of Chem. Technol. and Metall. 2011, 46(3), 283-292.
  • [62] Kumar S., Jain A., Sorptive removal of crystal violet from aqueous solution using spent tea leaves: Part I. Optimization of sorption conditions & kinetics studies, Acta Chim. Slov. 2010, 57, 751-757.
  • [63] Uddin M.T., Rukanuzzaman M., Khan M.M.R., Islam M.A., Removal of methylene blue by tea waste, J. Hazard. Mater. 2009, 164, 53-60.
  • [64] Ofomaja A.E., Kinetic study and sorption mechanism of methylene blue and methyl violet on to Mansonia wood sawdust, Chem. Eng. J. 2008, 143(1-3), 85-95.
  • [65] Mishra V., Balomajumder C., Agarwal V.K., Biosorption of Zn(II) on to the surface of nonliving biomasses. A comparative study of a desorbent particle size and removal capacity of three different biomasses, Wat., Air, and Soil Pollut. 2010, 211, 489-500.
  • [66] Hashemian S., Ardakani M.K., Salehifar H., Kinetics and thermodynamics of adsorption methylene blue onto tea waste/CuFe2O4 composite, Amer. J. of Analyt. Chem. 2013, 4, 1-7.
  • [67] Alaa Jewad K. Al-gidsawi, A study of ability of adsorption of some dyes on activated carbon from date stones, Australian J. Basic and Appl. Sci. 2011, 5(11), 1397-1403.
  • [68] Mall I.D., Srivatava V.C., Agarwal N.K., Removal of orange-G and methyl violet dyes by the adsorption onto bagasse fly ash: Kinetics study and equilibrium isotherm nalysis, Dyes Pigm. 2006, 69(3), 210-223.
  • [69] Akus A., Gonen F., Biosorption of phenol by immobilized activated sludge in a contenous packed bed: Predication of breakthrough curves, Process Biochem. 2004, 39(5), 599-613.
  • [70] Zhang J., Li Y., Zhang C.L., Jing Y.M., Adsorption of malachite green from aqueous solution onto carbon prepared from Arudo donax root, J. Hazard. Mater. 2008, 150(3), 774-782.
  • [71] Auta M., Hameed B.H., Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye, Chem. Eng. J. 2011, 171, 502-509.
  • [72] Vadivelan V., Kumar KV., Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Inter. Sci. 2005, 286, 90-100.
  • [73] Fuat Gu¨zel, Hasan Sayg˘ıli, Gu¨ lbahar Akkaya Sayg˘ılı a, Filiz Koyuncu, Decolorisation of aqueous crystal violet solution by a new nanoporous carbon: Equilibrium and kinetic approach, J. Ind. Eng. Chem. 2014, 20, 3375-3386.
  • [74] Abul Hossain M., Atiqur Rahman M.D., Removal of basic violet 10 from neutral aqueous solution by adsorption on used black tea leaves, Inter. J. Chem. 2013, 2.
  • [75] Annadurai G., Juang R.S., Lee D.J., Use of cellulose based wastes for adsorption of dyes from aqueous solutions, J. Hazard. Mater. 2002, 92, 263-274.
  • [76] Jassem M.S., Abdulkarim M.S., Firyal M.A., Batch adsorption study of methylene blue dye onto date stone activated carbon, Al-Mustansiriyah J. Sci. 2011, 22, 6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02cb0a7a-eb7e-4909-894f-20a3d25ca55a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.