Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper describes the process of obtaining Cu-SiC-Cu systems by way of spark plasma sintering. A monocrystalline form of silicon carbide (6H-SiC type) was applied in the experiment. Additionally, silicon carbide samples were covered with a layer of tungsten and molybdenum using chemical vapour deposition (CVD) technique. Microstructural examinations and thermal properties measurements were performed. A special attention was put to the metal-ceramic interface. During annealing at a high temperature, copper reacts with silicon carbide. To prevent the decomposition of silicon carbide two types of coating (tungsten and molybdenum) were applied. The effect of covering SiC with the aforementioned elements on the composite’s thermal conductivity was analyzed. Results were compared with the numerical modelling of heat transfer in Cu-SiC-Cu systems. Certain possible reasons behind differences in measurements and modelling results were discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1311--1314
Opis fizyczny
Bibliogr. 10 poz., rys., wzory
Twórcy
autor
- Institute of Electronic Materials Technology, 133 Wólczyńska Str, 01-919 Warsaw, Poland
autor
- Institute of Electronic Materials Technology, 133 Wólczyńska Str, 01-919 Warsaw, Poland
autor
- Institute of Electronic Materials Technology, 133 Wólczyńska Str, 01-919 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5b Pawinski Str., 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5b Pawinski Str., 02-106 Warsaw, Poland
autor
- Institute of Electronic Materials Technology, 133 Wólczyńska Str, 01-919 Warsaw, Poland
Bibliografia
- [1] A.K. Sahoo, S. Pradhan, A.K. Rout, Archiv. Civ. Mech. Eng. 3, 27-35 (2013).
- [2] W. Węglewski, M. Basista, M. Chmielewski, K. Pietrzak, Compos. Part B 43 (2), 255-264 (2012).
- [3] W. Węglewski, M. Basista, A. Manescu, M. Chmielewski, K. Pietrzak, Th. Schubert, Compos. Part B 67, 119-124 (2014).
- [4] M. Chmielewski, W. Węglewski, Bull. Pol. Acad. Sci-Te. 61 (2), 507-514 (2013).
- [5] Z. Lin, Q. Xuan-Hui, D. Bai-Hua, H. Xin-Bo, Q. Ming-Li, R. Shu--Bin, Int. J. Miner. Metall. Mater. 16 (3), 327-33 (2009).
- [6] F. de Monte, Int. J. Heat Mass Trans. 43, 3607-3619 (2000).
- [7] Y. Sun, I.S. Wichman, Int. J. Heat Mass Trans. 47, 1555-1559 (2004).
- [8] A. Haji-Sheikh, J.V. Beck, D. Agonafer, Int. J. Heat Mass Trans. 46, 2363-2379 (2003).
- [9] B. Yang, H. Shi, Int. J. Heat Mass Trans. 131, 111304 (2009).
- [10] Y.F. Sun, H. Fujii, Mater. Sci. Eng. A 528, 5471-5475 (2011).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02caa7df-2c50-408a-9dae-91c01a03bf74