PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust predictive attitude control with stochastic dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to design a robust predictive attitude controller when the disturbance is not known and it is modelled based on the stochastic theory and not directly from the environment and its laws. The paper starts with a brief introduction about the interest of attitude control, the state of the art, the limitations and the objectives of the research work. Then it moves on the control model chosen for the work. The main part is related to the modelling of the stochastic disturbance and the actuation of the controller. The results obtained match the initial idea about the capability of the controller to work under an unknown disturbance torque. Indeed, the graphical results show, for all the different conditions considered, that the required attitude is always reached, meaning that the aim of this work was achieved.
Rocznik
Strony
86--97
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
autor
  • School of Space Engineering, Politecnico di Milano 20156 Milan, Italy
  • LAETA-UBI/AeroG and Department of Aerospace Sciences, University of Beira Interior 6201-001 Covilhã, Portugal
Bibliografia
  • [1] Schwenzer, M., Ay, M., Bergs, T., & Abel, D. (2021). Review on model predictive control: An engineering perspective. The International Journal of Advanced Manufacturing Technology, 117(5-6), 1327-1349. https://doi.org/10.1007/s00170-021-07682-3.
  • [2] Wang, P., Tang, G.J., Liu, L. H., & Wu, J. (2013). Nonlinear hierarchy-structured predictive control design for a generic hypersonic vehicle. Science China Technological Sciences, 56(8), 2025-2036. https://doi.org/10.1007/s11431-013-5273-7.
  • [3] Guiggiani, A., Kolmanovsky, I., Patrinos, P., & Bemporad, A. (2015). Constrained model predictive control of spacecraft attitude with reaction wheels desaturation. 2015 European Control Conference (ECC). https://doi.org/10.1109/ecc.2015.7330731.
  • [4] Hegrenæs, Ø., Gravdahl, J.T., & Tøndel, P. (2005). Spacecraft Attitude Control using explicit model predictive control. Automatica, 41(12), 2107-2114. https://doi.org/10.1016/j.automatica. 2005.06.015
  • [5] Lu, P. (1994). Nonlinear predictive controllers for continuous systems. Journal of Guidance, Control, and Dynamics, 17(3), 553-560. https://doi.org/10.2514/3.21233.
  • [6] Carloni, G., & Bousson, K. (2016). A nonlinear control method for Autonomous Navigation Guidance. International Review of Civil Engineering (IRECE), 7(4), 102. https://doi.org/10.15866/irece.v7i4.10757.
  • [7] Crassidis, J.L., Markley, F.L., Anthony, T.C., & Andrews, S.F. (1997). Nonlinear predictive conrol of spacecraft. Journal of Guidance, Control, and Dynamics, 20(6), 1096-1103. https://doi.org/10.2514/2.4191.
  • [8] Panik, M.J. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling. Wiley Blackwell.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02c8e961-421d-46cd-b164-3e452102feb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.