PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Linear adaptive structure for control of a nonlinear MIMO dynamic plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper an adaptive linear control system structure with modal controllers for a MIMO nonlinear dynamic process is presented and various methods for synthesis of those controllers are analyzed. The problems under study are exemplified by the synthesis of a position and yaw angle control system for a drillship described by a 3DOF nonlinear mathematical model of low-frequency motions made by the drillship over the drilling point. In the proposed control system, use is made of a set of (stable) linear modal controllers that create a linear adaptive controller with variable parameters tuned appropriately to operation conditions chosen on the basis of two measured auxiliary signals. These are the ship’s current forward speed measured in reference to the water and the systematically calculated difference between the course angle and the sea current (yaw angle). The system synthesis is carried out by means of four different methods for system pole placement after having linearized the model of low-frequency motions made by the vessel at its nominal “operating points” in steady states that are dependent on the specified yaw angle and the sea current velocity. The final part of the paper includes simulation results of system operation with an adaptive controller of (stepwise) varying parameters along with conclusions and final remarks.
Rocznik
Strony
47--63
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
  • Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin, 26 Kwietnia 10, 71-126 Szczecin, Poland
autor
  • Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin, 26 Kwietnia 10, 71-126 Szczecin, Poland
  • Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin, 26 Kwietnia 10, 71-126 Szczecin, Poland
Bibliografia
  • [1] Antoniou, E. and Vardulakis, A. (2005). On the computation and parametrization of proper denominator assigning compensators for strictly proper plants, IMA Journal of Mathematical Control and Information 22(1): 12–25.
  • [2] Aström, K. and Wittenmark, B. (1995). Adaptive Control, Addison Wesley, Reading, MA.
  • [3] Bańka, S. (2007). Multivariable Control Systems: A Polynomial Approach, Szczecin University of Technology Press, Szczecin, (in Polish).
  • [4] Bańka, S., Dworak, P. and Brasel, M. (2010a). On control of nonlinear dynamic MIMO plants using a switchable structure of linear modal controllers, Measurement Automation and Monitoring 56(5): 385–391, (in Polish).
  • [5] Bańka, S., Dworak, P., Brasel, M. and Latawiec, K.J. (2010b). A switched structure of linear MIMO controllers for positioning of a drillship on a sea surface, Proceedings of the 15th International Conference on Methods and Models in Automation and Robotics, MMAR 2010, Międzyzdroje, Poland, pp. 249–254.
  • [6] Bańka, S., Dworak, P. and Jaroszewski, K. (2011a). Adaptive controller of ships position based on a nonlinear model of drillship motions in 3DOF, in K. Malinowski and R. Dindorf (Eds.), Advances of Automatics and Robotics, Kielce University of Technology Press, Kielce, pp. 21–26, (in Polish).
  • [7] Bańka, S., Dworak, P. and Jaroszewski, K. (2011b). Problems associated with realization of neural modal controllers designed to control multivariable dynamic systems, in K. Malinowski and R. Dindorf (Eds.), Advances of Automatics and Robotics, Kielce University of Technology Press, Kielce, pp. 27–41, (in Polish).
  • [8] Bańka, S. and Latawiec, K.J. (2009). On steady-state error-free regulation of right-invertible LTI MIMO plants, Proceedings of the 14th International Conference on Methods and Models in Automation and Robotics, MMAR 2009, Międzyzdroje, Poland, DOI: 10.3182/20090819-3-PL-3002.00066.
  • [9] Callier, F.M. and Kraffer, F. (2005). Proper feedback compensators for a strictly proper plant by polynomial equations, International Journal of Applied Mathematics and Computer Science 15(4): 493–507.
  • [10] Fabri, S. and Kadrikamanathan, V. (2001). Functional Adaptive Control. An Intelligent Systems Approach, Springer-Verlag, Berlin.
  • [11] Fossen, T. I. and Strand, J.P. (1999). A tutorial on nonlinear backstepping: Applications to ship control, Modelling, Identification and Control 20(2): 83–135.
  • [12] Gierusz, W. (2005). Synthesis of Multivariable Control Systems for Precise Steering of Ships Motion Using Selected Robust Systems Design Methods, Gdynia Maritime Academy Press, Gdynia, (in Polish).
  • [13] Kaczorek, T. (1992). Linear Control Systems: Analysis of Multivariable Systems, John Wiley and Sons, New York, NY.
  • [14] Pedro, J.O. and Dahunsi, O.A. (2011). Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system, International Journal of Applied Mathematics and Computer Science 21(1): 137–147, DOI: 10.2478/v10006-011-0010-5.
  • [15] Tatjewski, P. (2007). Advanced Control of Industrial Processes, Springer-Verlag, London.
  • [16] Tomera, M. (2010). Nonlinear controller design of a ship autopilot, International Journal of Applied Mathematics and Computer Science 20(2): 271–280, DOI: 10.2478/v10006-010-0020-8.
  • [17] Tzirkel-Hancock, E. and Fallside, F. (1992). Stable control of nonlinear systems using neural networks, International Journal of Robust and Nonlinear Control 2(1): 63–86.
  • [18] Vidyasagar, M. (1985). Control System Synthesis: A Factorization Approach, MIT Press, Cambrigde, MA.
  • [19] Wise, D.A. and English, J.W. (1975). Tank and wind tunnel tests for a drill-ship with dynamic position control, Offshore Technology Conference, Dallas, TX, USA, pp. 103–118.
  • [20] Witkowska, A., Tomera, M. and Śmierzchalski, R. (2007). A backstepping approach to ship course control, International Journal of Applied Mathematics and Computer Science 17(1): 73–85, DOI: 10.2478/v10006-007-0007-2.
  • [21] Wolovich, W.A. (1974). Linear Multivariable Systems, Springer-Verlag, New York, NY.
  • [22] Zhai, G. and Xu, X. (2010). A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching, International Journal of Applied Mathematics and Computer Science 20(2): 249–259, DOI: 10.2478/v10006-010-0018-2.
  • [23] Zwierzewicz, Z. (2008). Nonlinear adaptive tracking-control synthesis for general linearly parametrized systems, in J.M. Ramos Arreguin (Ed.), Automation and Robotics, InTech, pp. 375–388, DOI: 10.5772/6116.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02c7f9c2-d2a1-4835-a97a-1171eb1584f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.