PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes in strength parameters of pipelines rehabilitated with close-fit Trolining liners – numerical analysis based on laboratory tests

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underground network infrastructure shows that even objects functioning in the third technical condition, according to ATV A127, and subjected to rehabilitation with the use of close-fit trenchless technologies are capable of withstanding external loads. It is necessary to conduct analysis and research regarding the mechanical properties of pipelines strengthened with close-fit liners. Calculations, based on laboratory tests, were carried out using the Finite Element Method and Abaqus software as a computational tool. This paper aims to increase knowledge in the area of the possibility of using close-fit liners for pipelines operating in the second technical condition according to ATV A127. A direct and applicable value of the carried out calculations is to provide knowledge about the real bearing capacity of conduits renewed with close-fit liners, and in particular a Trolining liner. The knowledge gained as a result of research, which was conducted in the previous stage, and calculations can be a basis to undertake a discussion on the selection of the strength parameters of close-fit liners.
Rocznik
Strony
30--40
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Division of Urban Engineering, Wrocław University of Technology, Poland
Bibliografia
  • [1] A. Kuliczkowski, Technical Condition of Sewer Networks in Cities. The Problems and Techniques for their Modernization, Installation Market 11, Warsaw, 2014, pp. 66–77.
  • [2] A. Kuliczkowski, Durability of Solutions Used in the Construction and Renovation of Sewer Pipes, Instal 3, Warsaw, 2014, pp. 54–56.
  • [3] ATV – DVWK – A127P Guideline, Static Strength Calculations – Sewer Collectors and Drains, Issue 3, Seidel-Przywecki, Warsaw, 2000.
  • [4] T. Abel, Laboratory tests of pipelines reinforced with close-fit Trolining liner, Archives of Civil and Mechanical Engineering 15 (2) (2015) 427–435.
  • [5] C. Madryas, T. Abel, Testing the Influence of Construction Quality on Loading Capacity of Sewers Reconstructed with Unconstrained Linings According to Trolining Technology. Stage I: Laboratory Testing of Lining Test Pieces of Trolining, International No-Dig Show North America Society for Trenchless Technology, Dallas, USA, 2008.
  • [6] C. Madryas, T. Abel, Testing the Influence of Longitudinal and Transversal Cracks on Load Capacity of Trolining Liners, International No-Dig Show, North American Society for Trenchless Technology, Toronto, Canada, 2009.
  • [7] C. Madryas, T. Abel, Testing the Influence of Longitudinal and Transverse Cracks on Load Capacity of Trolining Liners – Stage III, International No-Dig Show, North American Society for Trenchless Technology, Chicago, USA, 2010.
  • [8] B. Falter, M. Wolters, The Minimum Overlap and Acceptable Load on Sewers with a Small Hollow, Fachhochschule Münster, 2008. p. 10.
  • [9] R.G. Ahlv, Effects of Heavy – Load Traffic in a Shallow – Buried Flexible Pipe, Materials and Construction, Highway Research Board Proceedings, 1960, pp. 372–384.
  • [10] R.K. Watkins, M. Ghavami, G.H. Longhurst, Minimum cover for buried flexible conducts, Journal of Pipeline Division, Proceedings of the ASCE (1968) 155–171.
  • [11] E. Gaube, H. Hofer, W. Müller, Hard Pipes made of Polyethylene. The Results of Research on the Time and Pressure Variability and Deformation, Kunststoffe, 1971. p. 2.
  • [12] R.E. Nowack, Sewers and pipes made of plastic. ‘‘The creep behavior and the results of research’’, Abwassertechnik, 1992.
  • [13] R.K. Watkins, O.K. Schupe, L.E. Osborn, Contribution of Insitupipe to the Structural Integrity of Broken Rigid Buried Pipes, Insituform of North America, Inc., 1988.
  • [14] V. Wagner, Buckling during the Renovation of Non-man Leaky Channels with use of Continuous Liners, (Dissertation), TU Berlin, 1992.
  • [15] W. Arns, Research and Analysis of the Trolining System with Verification of Nonlinear Finite Element Analysis, (Thesis), Universitat Gesamthochschule Paderborn, 1993.
  • [16] L.K. Guice, T. Straughan, C.R. Norris, R.D. Bennett, Long-term Behavior of Pipeline Rehabilitation Systems, Louisiana Tech University, Ruston, 1994.
  • [17] M. Alberding, Time-dependent Buckling Behavior in HDPEU – Liners, (Dissertation), Oldenburg, 1996.
  • [18] F. Alferink, L.E. Janson, J.L. Olliff, Design of Thermoplastic Pipes: Prediction of Pipe Deflection versus Field Measured Values, Plastics Pipes 10, Göteborgh, 1998. p. 495.
  • [19] B. Falter, H. Hinrichs, J. Lenz, B. Schwerdt, Plastic pipes, laid in the ground under traffic load combinations and internal pressure. Research and calculations, Abwasser 46 (1999) 233.
  • [20] J. Lühr, D. Mälzer, H. Schmidt, Plastic pipes laid in the ground under extreme load and in extreme conditions, Abwasser Abfall 50 (2003) 1012–1021.
  • [21] K. Steffens, B. Falter, G. Grunwald, H. Harder, Sewers and Water Supply, Static Behavior in the Repair and Renovation. Collective Research Project 01RA 9803/8 Supported by the BMBF, Institut für Experimentelle Statik, HS Bremen, 2002.
  • [22] D. Stein, Continuous Pressure Test Trolining Preliner Duplex System over 10,000 hours, Bochum, 2000.
  • [23] R. Swan, WRC Assesment and Approval of the TROLINING Pipe Renovation System – Summary Report, Swindon, 2001.
  • [24] H. Doll, Calculations of liners. Close-fit liners, nr. 59, Institut fur Grundbau, Bodenmechanik und Energiewasserbau, Universitat Hannover, 2001.
  • [25] M. Knight, A. Bayat, A. Adedapo, Validation of Earth Pressure Measurements Obtained below a Flexible Pavement, (Dissertation), University of Waterloo, 2008.
  • [26] B. Falter, J. Eilers, J. Müller – Rochholz, M. Gutermann, Buckling experiments on polyethylene liners with egg-shaped cross- sections, Geosynthetics International 15 (2008) 152–164.
  • [27] B. Nienartowicz, Analysis of selected aspects of the operations of pipelines renewed with the relining method on the basis of laboratory testing results, in: Madryas, et al. (Eds.), Underground Infrastructure of Urban Areas 3, Taylor & Francis Group, London, 2015.
  • [28] Technical and Informative Materials of Trolining, GmbH Company, Troisdorf, 2000.
  • [29] W. Zhao, D. Hall, 3D Modeling of Pipe Liners with Thickness Variations, North American Society for Trenchless Technology, New Orleans, LA, 2004, March.
  • [30] B. Falter, Lining Stability: Analysis of Damaged Sewers, North American Society for Trenchless Technology, New Orleans, LA, 2004, March.
  • [31] M.J. Kennedy, I.D. Moore, G.D. Skinner, Development of tensile hoop stress during horizontal directional drilling through sand, International Journal of Geomechanics, ASCE (September/October) (2006).
  • [32] R.I.W. Brachman, I.D. Moore, R.K. Rowe, The design of a laboratory facility for evaluating the structural response of small-diameter buried pipes, Canadian Geotechnical Journal 37 (2000), Canada.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02c61003-2b29-409d-92d6-73eca81eca4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.