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Uwzględnianie niepewności 
w modelach potencjałów 

ruchotwórczych1

Streszczenie. W modelach sieci transportowych wiele zmiennych opisuje cechy fizyczne sie-
ci. Integracja wynikowej niepewności jest tylko częściowa. Wiele tych zmiennych jest opartych na 
hipotezach i oszacowaniach. Metoda Monte Carlo jest efektywną narzędziem oceny scenariuszy, 
w których pewne zmienne nie mogą być opisane dokładnie. W artykule rozważano zastosowanie 
metody MC z zaproponowaną strukturą zmiennych losowych opisujących niepewność podczas ge-
nerowania podróży. Powtarzanie obliczeń powoduje rosnącą dokładność wartości potoku ruchu na 
łuku i różnorodność funkcji rozkładu. Szczegóły analizy ilustrują trudności, które mogą pojawiać 
się podczas stosowania metody MC.

Słowa kluczowe: metody Monte Carlo, modelowanie transportu, VISUM, symulacja sto-
chastyczna

1. Introduction

This paper establishes a connection between the Monte Carlo method and 
transportation modelling. To introduce the implementation, general outlines are 
addressed first, briefly discussing the characteristics of the MC method, and rele-
vant methodologies of modelling.

Details of the analysis illustrate the difficulties which might rise when adopting 
the MC method.Results of a hypothetical scenario are presented in regard of link 
volumes, showing different random effects.

Further possibilities promise higher convergence rate, estimation of precision, 
and sensitivity analysis of the modelled transportation network in context of the 
implemented stochastic variables. Extending the set of these variables is also a po-
ssible path.

1	  Wkład autorów w publikację: Kisgyörgy L. 50%, Vasvari G. 50%

Lajos Kisgyörgy
PhD, Budapest University of Technology and Econom-
ics, Hungary, tel.: +36 1 463 1159, e-mail: kisgyorgy@
uvt.bme.hu

Gergely Vasvari
MSc, Budapest University of Technology and Econom-
ics, Hungary, tel.: +36 1 463 1537, e-mail: vasvari@
uvt.bme.hu



180 Kisgyörgy L., Vasvari G.

2. Uncertainty, risk, confidence

Measurements and estimations are usually about supporting decisions[1].If the 
decision in question has significant consequence would it turn outwrong,then me-
thods reducing uncertainty about it have a high value. The meaning of uncertain-
ty is worth clarifying: uncertainty is the lack of complete certainty, which means 
the existence of more than one possibility, and that the “true” outcome is not 
known. Uncertainty could be measured by assigninga set of probabilities for the 
set of possible outcomes. By this approach risk is defined as a state of uncertainty 
where some of the possibilities involve a loss, catastrophe or other undesirable out-
come. Risk is measured by a set of possibilities each with quantified probabilities 
and quantified losses.

One method to express uncertainty about a variable is to think of it as a range 
of probable values. In statistics a range that has specific probabilityto contain the 
correct value is called a confidence interval.

For any kind of model which – at least partially – aims for prediction coping 
with uncertainties may have a high value. However usual methods to predict the 
expected traffic volumes are strongly limited in this sense. The results of traffic 
forecast models depend greatly on the development of the future values of in-
dependent variables. And this development is unclear, we cannot tell the future 
values for sure. This uncertainty can have significant consequences hence it should 
beevaluated.One possible method to deal with uncertainty is stochastic simulation 
which describes the result with probability distribution.

3. Monte Carlo method

The Monte Carlo method is a powerful and practical empirical method to re-
duce uncertainty[2,3]. In general terms, Monte Carlo method always consists of 
a high number of repeated calculations, where the values of some input variables 
are determined randomly before each calculation[4]. After the whole process – 
often referred as Monte Carlo Simulation (MCS)[5]– results are evaluated either to 
describe the expected value and probability distribution of an unknown quantity 
or to estimate the results of complex equations where the analytical solution is 
not feasible. Hence the method requires the ability to describe the uncertainty of 
several variables – which would be generated according to this description – and 
also a deterministic model, or process to calculate dependable results for each re-
petition. Conventionally it is used when there is a need to account for the uncerta-
inties in future values of variables affecting the outcome of a deterministic theory 
(prediction), or to assess the possible outcome of a complex event-tree (decision 
support, reliability analysis, risk management), and even to acquire the value of 
a complex procedure when the required precision can be set (computational phy-
sics).
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The applied Monte Carlo method first assigns a probability density function 
(PDF) to the uncertain variables. The type of the distribution usually is normal, 
triangular, uniform or lognormal, based on the conditions surrounding the varia-
ble, the current state of knowledge and personal experience. Once the distribu-
tions are attributed, MCS takes randomly sampled values from them, to form one 
possible scenario and one possible result. After recording the outcome the process 
is repeated several times, giving the response of measurements for a range of po-
ssible scenarios. The measured variables are then complemented by a probability 
distribution that approximates the answer to the problem.

4. Transportation modelling

To clarify the terms of the research, it should first be noted that the demonstra-
ted method was tested on a small size hypothetical transportation network model 
to explore implementation possibilities. Public transportation mode and complex 
demand modelling was not addressed in this model. The proposed method was 
tested with the basic 4-step modelling approach first, to assess its suitability. The-
refore, the advanced topics will not be discussed here. Thorough calibration of the 
model was also omitted as the current goal was not to give reasonable prediction 
for a unique scenario but to explore the theoretical possibilities and benefits of the 
stochastic simulation.

The MC method requires the identification of deterministic processes and un-
certain variables in the environment where the simulation would be applied. The-
se are detailed in the following paragraphs.

4.1. Deterministic features

A network model[6] is a definite description of the real-life road network[7]. 
Movement restrictions, impedances, capacities all depend on road network charac-
teristics. If these qualities changed over time that would mean a different model 
in the analysis.

Basic trip distribution[8]methods deliver a solution for splitting the previously 
generated traffic demand into O-D matrices. Distribution with the gravity model 
is an iterative process[9], once the parameters are set the result depends on co-
nvergence criteria which should not change throughout the analysis. These criteria 
depend on the consideration of network complexity and processing resources thus 
could be regarded as constant per model. Therefore the whole trip distribution 
procedure is a deterministic – iterative – process for each given set of function 
parameters.

Traffic assignment is either a multi-step process where the number of steps 
are previously set (one step for all-or-nothing assignment, and several steps for 
incremental assignment) or includes an iterative process as well, based on these 
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fixed steps (equilibrium assignment). The result of a multi-step assignment are 
determined by network attributes, thus may be considered deterministic. Iterative 
assignments are also governed by convergence criteria, as the process of trip distri-
bution, and may also be considered a deterministic procedure for the same reasons.

4.2. Uncertainties

In several cases of transportation modelling scenarios, estimations are required.
The most relevant example is future travel demand and activity. Common mo-

delling practice dictates the worst and the best case scenarios to assess these uncer-
tainties, however the range of results between those scenarios or the probability of 
each scenario cannot be readily estimated.

Trip generation determines the expected traffic load of a scenario. The total 
traffic volume, the number of generated trips is the function of actual data and 
estimated factors. Its value consists uncertainties, e.g. how many home-to-work 
trips would manifest given a spread of GDP in a future scenario. Here, either the 
future value of the GDP or both GDP and the function parameters determining 
the number of generated trips, may be indefinite. 

Although the process of trip distribution is deterministic, the attractiveness, 
or deterrence of destinations also depend on economic factors, introducing time-
-variance – therefore liability – to the parameters of the gravity model’s deterrence 
function, thus into the phase of trip distribution.

In mode-choice models there is the possibility that a traveller does not choose 
the best, most feasible transportation mode for his trip, because personal prefe-
rences – e.g. the choice of a scenic route instead of a shorter tunnel – due to the 
lack of information or other unknown details. The variability of perceived travel 
costs is also an issue in this process. Stochastic factors influencing modal split are 
handled by currently available models (Kirchoff, Box-Cox, Logit, etc.) based on 
extensive survey data.

The primary focus of this paper is to address stochastic effects influencing trip 
generation. The extension of the process of trip distribution may be achieved in 
the same method.

It should be noted that although mode choice and choice variance was men-
tioned here, the experimental models only included a single travel mode – private 
transport.

5. Synthesis

The inclusion of random variablesneeds additional considerations after the as-
sessment of deterministic processes and uncertainties. In the current research trip 
generation potentials were described as the product of several factors, which all 
had some degree of randomness. Although these factors were determined theore-
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tically, they may be calculated from real census data. Adaptation of the process is 
also possible to a different set of variables.

5.1. Structure

Uncertainties at the level of trip generation were implemented both on general 
and individual levels as follows (Zone and variable structure are shown on Figu-
re 1).

First, production and attraction potentials were assigned for each zone. These 
attributes represent the basis on which the proportion of generated and attrac-
ted trips will be calculated (e.g. the number of households for a residential zone, 
and the number of workplaces for an industrial, or commercial zone). Values are 
expressed in ‘trip generation units’. 

Figure 1. Zone and variable structure 
Source: own

Zones are sorted into zone groups e.g. ‘home’ and ‘workplace’. These groups 
both help to assign trip orientations based on the time-of-day and serve as the pri-
mary structural level of categorization. Trip orientation was bipolar: ‘home’ zones 
producing, and ‘work’ zones attracting the trips for a supposed morning period, 
and having an opposite layout for the evening period. As zone group is a hierarchi-
cal and filtering concept, there is no value assigned to this attribute.

Zones are further divided into zone types, which – presumably or statistically 
– generate different number of trips per potential trip generation unit, as – for 
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example – the average number of trips per household for a suburban area is dif-
ferent than for a range of condominiums. Each zone type have a specific ‘average 
trip generation ratio’ (trips/trip generation units) to describe this property.

Zone types represent average, general statistical rates of trip generation, but 
in real life, these values always have a deviance to the average. To account for this 
discrepancy an ‘individual divergence rate’ was introduced on a per-zone basis. This 
attribute may also help to describe existing differences between similar zones, 
as one residential area might be more popular than the average, and another be 
abandoned. The divergence rate is expressed as a percentage.

Application of this structure to the test network is displayed on Figure 2. The 
test network consisted of 50 links and 25 zones.

Figure 2. Inner zones by group and type 
Source: own

5.2. Random variables

Potentials (number of households, number of jobs) are determinate, and could 
be derived directly from land use data and population statistics. Average trip ge-
neration ratios can be determined by statistical analysis of a time- and/or space va-
rying data set, where the uncertainty – spread, or deviation – of this attribute can 
also be described. These calculations are outside of the scope of this research, the-
refore excluded from this discussion. Individual divergence rate expresses either or 
both the confidence in these average values, and the difference of respective zones.

Each one of these attributes (average trip generation ratio, individual diver-
gence rate) is defined in the model as a random variable, having a probability 
distribution with describing variables – e.g. a mean and deviation for a normal 
distribution. Currently, only a simple uniform distribution was set for all variables 
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(Figure 3), as the objective was to test the suitability of the Monte Carlo method 
for trip generation.

Figure 3. Applied random variable distribution

The range of the average trip generation ratio is presented in Table 1 for each 
zone type. Note that the ‘Outer’ zone types are the three zones on the edge of the 
network model numbered from 1 to 3 inside square frames on Figure 2.

Table 1. Average trip generation ratio per zone type

Name Min. value Max. value
Condominium 1.1 1.5
House 1.5 2.2
Industrial 0.8 0.9
Commercial 0.9 1.0
Outer 0.9 1.1

Source: own

For each inner (i.e. non-outer) zone, an individual divergence rate was set. Al-
though the implementation allowed for separate interval definition, this variable 
had only one range (Table 2), but the respective values were determined separately 
for each zone.

Table 2. Individual divergence rate of inner zones 

Name Min. value Max. value
Inner 0.9 1.1

Source: own

The actual value of the attributes are determined before each trip generation 
procedure by a random number generator, according to these describing variables. 
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The results of the trip generation - origin and destination traffic volumes – are the 
product of the introduced random variables and potentials. Average trip genera-
tion ratios are presented (1)(2) in a vector format for clarity, but it must be noted 
that the variance of the individual values is low, vectors consisting only a few zone 
types’ ratios. 

				    Oi=ai 
. bi 

. Pi
O	 (1)

				    Dj = aj 
. bj 

. Pj
D	 (2)

where:
- a

i
 = average trip generation ratio of zone i (thus its zone type’s trip gen.r.),

- b
i
 = individual divergence ratio, zone i,

- Pi
O = trip generation potential, zone i,

- Pj
D = trip attraction potential, zone j.

Resulting vectors O and D not necessarily meet the criterion that there are no 
vehicles lost in the network, anyone who started a trip, finishes it (3).

	 (3)

Therefore adjustment (4) is required, and was achieved by scaling the firsthand 
vector D:

	 (4)

The origin and destination vectors are then subject to the trip distribution pro-
cess which currently regarded as a deterministic procedure.

Traffic assignment – as a deterministic process – was not affected by stochastic 
variables.

6. Implementation

6.1. Simulation cycles

The application of the Monte Carlo method on the transportation network mo-
del consists of repetitive trip generation, trip distribution and traffic assignment 
cycles, fed by different random results of the trip generation phase detailed above. 
A complete set of cycles is further on referred to as simulation. At the start of each 
cycle, the values of vectors a and b are randomized to produce a new set of variables.

With Monte Carlo being an unexplored method in the domain of transporta-
tion modelling, there is no recommendation about necessary cycle number. Expe-
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riments were run with the setting of 100, 1 000, and 10 000 cycles to compare 
data output resolution and required processing time. 

6.2. Platform

PTV’s traffic network analysis suite, VISUM provided the modelling environ-
ment. This software – like any other modelling application commercially ava-
ilable – was not prepared to process and analyze thousands of successive traffic 
assignments. A custom utility had to be developed in order to generate the requ-
ired random variables, and to provide automated network analysis and evaluation. 
Communication with VISUM was established through the Component Object 
Model (COM) interface, enabling manipulation of model attributes, reading and 
saving of separate assignment results.

Generated random values play a major role in Monte Carlo methods, thus for re-
ference it should be noted that for this study the pseudo-random number generator 
utilized was the default Rnd() function of Microsoft’s. NET framework (version 4.5).

The description of random variables were implanted in the model as user-defi-
ned zone attributes. Origin and destination traffic volumes were managed by the 
developed software, generating the necessary random variables according to these 
describing attributes, then performing the necessary arithmetic operations (1)(2)
(4) to calculate vectors O and D.

Execution of the trip distribution and traffic assignment procedures was also 
handled by the utility, along with the collection of traffic volumes of each link on 
the network. 

6.3. Evaluation

After all cycles of trip generation, trip distribution and traffic assignment had 
been finished, the results were saved into a macro-enabled excel spreadsheet, for 
further adjustment. Cumulative distributions and probability densities of traffic 
volume measurements were determined for each link, using 10 vehicle/hour bins 
to aggregate the results. Statistical average, standard deviation and variance was 
also calculated for each link’s data set.

7. Results

7.1. Cycle number 

Since simulation cycle number have a major effect on both the results’ indi-
vidual values and the processing time, it was logical to assess the effect of cycle 
number on the results.This effect is demonstrated on a single link’s traffic volume 
results with different cycle numbers (Figure 4, Figure 5, Figure 6).
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Figure 4. Single link volume results of 100 cycles 
Source: own

Figure 5. Single link volume results of 1,000 cycles 
Source: own

Figure 6. Single link volume results of 10,000 cycles 
Source: own
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7.2. Link volumes

Note: demonstration of the results is limited to 10,000 simulation cycles, as it 
produced the most comprehensible data. All links’ distributions and densities are 
demonstrated on Figure 7 and Figure 8 for easy comparison.

Figure 7. Cumulative distribution of link volumes on the test network
Source: own

Figure 8. Probability densities of link volumes on the test network 
Source: own

Highlighted link volumes are presented here, to be discussed later (see: 8. Analysis).

Figure 9. Single link volume results of 10,000 cycles, shape of a skewed Gaussian distribution 
Source: own
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Figure 10. Single link volume results of 10,000 cycles, shape of a rectangular distribution 
Source: own

Figure 11. Single link volume results of 10,000 cycles, shape of a triangular distribution 
Source: own

The displayed smooth graphs are the results of a 10 000 step cycle, which took 
approximately 1.5 hours to finish. Final evaluation was completed in one minute. 
This timeframe expands rapidly by the size of the network. The method described 
in this paper was later tested on an average-sized city network (7000 links, 74 
zones) the same number of cycles taking 70 hours and evaluation about 2.5 hours 
processing time on the same computer.

8. Analysis

8.1. Cycle number

Inspecting the same link’s vehicle throughput results with various simulation 
cycle numbers, the differences are apparent. By setting a relatively low cycle num-
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ber, the shape of a Gaussian distribution is formed through a jagged S-curve of 
the cumulative distribution graph. Density values are fragmented, which is a clear 
consequence of the cycle number: the density analysis of n=100 measurements 
cannot be more refined than 1/n (see Figure 4).

Increasing the cycle limit’s order of magnitude (n=1,000) has significant ef-
fect on density values, their maximum resolution being 0.1% now. Although the 
distribution curve is smoother, its overall shape did not change significantly (Fi-
gure 5).

Going further by another order of magnitude (n=10,000), the density graph 
also becomes similar to a Gaussian distribution’s curve (Figure 6).

Although differences are visual, common statistical values do not show signifi-
cant contrast in the three data sets (see Table 3).

Table 3. Statistical averages, deviations and variances of the data set in function of cycle number 

n u su uu

100 1,223 130 10.6%
1,000 1,238 137 11.1%
10,000 1,247 141 11.3%

Source: own

The insignificant increase of the average is deceptive. Its value varies between 
simulations due to the stochastic nature of input variables, hence inclination is 
only apparent.

8.2. Link volumes

Different links on the network show different shapes of cumulative distribution 
and probability density graphs, meaning different reactions to traffic input. Since 
traffic assignment also includes shortest – or cheapest – path search between each 
zone pair, these graphs also indicate excessive volume-capacity ratios and critical 
roles of respective links.

Graphs on Figure 6 are related to a link connecting the inner road network to 
the bypass. This link has a nearby alternative with same features (capacity, spe-
ed restriction) but this link provides the higher accessibility of the two, and also 
channels higher traffic demand. Curve shape is close to a Gaussian distribution’s.

A skewed bell-shape on Figure 9 belongs to a link of a similar connecting role, 
but without nearby alternatives – actually one of its distant alternatives is the link 
mentioned before.

A link with low traffic demand shows the shape of a rectangular distribution on 
Figure 10. This link is the neighboring alternative of the first example (Figure 6), 
with lower importance (providing accessibility to fewer zones) on the network.
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Links shaping a triangular distribution, with highly spread traffic volume ran-
ge are links with low volume-capacity ratios (hence low saturation), as one of the 
bypass sections shown on Figure 11.

8.3. Overview

To have an overview of the whole network, all link distribution curves and 
density graphs are displayed on Figure 7 and Figure 8. These figures show a wide 
range of link volumes, higher capacity – and higher volume – links having a rela-
tively low slopes, and low capacity links having steep slopes.

It is important to note that although the input variables had a uniform – i.e. 
rectangular – distribution, most volume graphs bear some resemblance to a nor-
mal distribution. Speculations lead to the Central Limit Theorem, which states 
that the average of a large enough set of random independent trials lead to a nor-
mally distributed result. This theory is best demonstrated by a Galton board. The 
relevancy of this example is in the link volume’s composition regarding paths 
connecting different zone pairs. In this context a refined bell shape means that the 
corresponding link volume consists of routes from a large number of zones, as tho-
se volumes were determined by the product of two uniformly distributed random 
variables (see equations (1) and (2).

9. Conclusions

Results of regular transportation network model analysis consist of several va-
riables per network element. Each of these having a singular value e.g. a vehicle 
volume on a road section. By introducing a stochastic element at the level of trip 
generation in a hypothetical test network – thus affecting the total and route 
specific vehicle volume of the network in a controlled random fashion – it was 
possible to gain more detailed information about link volumes than ordinary ana-
lysis would allow – including the best and the worst case scenarios. The calculated 
expected – average – volume and its deviation describe the range of possible out-
comes, and could explain certainty of the results instead of a singular value. The 
increased number of simulation cycles add fine details to this description at the 
cost of higher calculation time and careful evaluation of the results.

The ongoing research uncovered a new aspect: At the level of link volumes, 
range and distribution show high diversity. The total range of traffic volume varies 
in width, and probability densities might take the shape of rectangular, triangular, 
Gaussian, and skewed Gaussian distributions, which show the different exposition 
of different links to the effect of stochastic input variables denoting the emergence 
of a higher level context: network vulnerability. Further research steps are required 
to analyse this perspective.
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The demonstrated procedure is easily parallelized, by distributing the cycles to 
several computers, running the process simultaneously. Results could be evaluated 
after concatenating the output of these individual simulations.

This novel approach to transportation network analysis promises the inclusion 
of certainty in the results of traditional models by giving a probability distribution 
to the affected outputs. Application of the methodology to a detailed and properly 
calibrated model would push its already reliable results to a higher level. 

10. Future aspects

The current focus was set on the process of trip generation. Involving trip di-
stribution in the methodology is a logical path. A widely used example is the gra-
vity model, where a deterrence function describes the attractiveness of destination 
zone j to persons entering the network from zone i:

	 (5)

where:
- f(Cij)= deterrence function,
- Cij = travel cost between zones i and j.

An implementation of the deterrence function by the familiar combined-logit-
-model is:

	 (6)

where:
- a, b, c = calibration factors.

Variables of the deterrence function – on which the distribution of the previo-
usly generated trips relies – are also estimations. Here, the calibration factors a, b, 
c (see (6)) may also be described as random variables to express the uncertainty of 
the traveller’s destination choice.

Modal-split models are already established, the higher complexity solutions 
account for the stochastic nature of traveller’s mode choices. These models may 
not be a suitable environment to introduce MC principles, but it may worth a trial 
to conclude that path. These models have similar calibration factors to the gravity 
model’s deterrence function in trip generation (see (6)) which means that imple-
mentation would not be more difficult. 

Traffic assignment (all-or-nothing, incremental, equilibrium) has no clear ope-
ning for adaptation. All-or-nothing and incremental assignments are essentially 
single or repetitive shortest path searches, having no relevancy to real-life deci-
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sions as the shortest path searches do not result in multiple alternative routes. 
Only the shortest routes are determined therefore it is not possible to include the 
stochastic nature of user choice. It would also be almost impossible to manipulate 
the shortest path search algorithms of existing transportation modelling software, 
being highly optimized, and non-customizable and also inaccessible part of the 
software.

Equilibrium assignment algorithms use several variables to check convergen-
ce – none of them could be interpreted as the model’s uncertainty. Also there are 
stochastic equilibrium assignment methods available to model the probabilistic 
nature of user choice, which would make the MC implementation obsolete.

As it was mentioned before, description of network vulnerability may be po-
ssible by making use of the MC simulation results. This aspect definitely needs 
additional extensive research taking network topology into account. 
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