PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Natural and synthetic estrogenic compounds in the Pearl River Estuary and northern shelf of the South China Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Endocrine disrupting compounds and in particular estrogenic substances have the ability to interact with the hormone system of organisms. Among them are not only synthetic but also natural substances that potentially stress the aquatic ecosystem. High human population densities such as around the Pearl River Estuary (PRE) are suspected of exerting significant anthropogenic pressure onto coastal areas. In this study, natural and synthetic estrogens as well as estrogen-like substances derived from plants and fungi were investigated in the PRE and at the adjacent northern shelf of the South China Sea. Maximum concentration of 3.6 ng L−1 for estrone (E1), 0.7 ng L−1 for 17α-ethinylestradiol (EE2), 12.9 ng L−1 for genistein (GEN), 11.9 ng L−1 for daidzein (DAI) and 1.9 ng L−1 for zearalenone (ZEN) were observed. While E1 and EE2 were detected in fresh and saltwater samples, GEN, DAI and ZEN were observed only at freshwater sampling sites. During the investigations, the analysis of 17β-estradiol (E2) and EE2 indicated a strong matrix dependence. Additionally, an estrogen screen observation showed estrogenic activity in form of estradiol equivalent quotients up to 0.18 ng L−1.
Czasopismo
Rocznik
Strony
30--43
Opis fizyczny
Bibliogr. 55 poz., map., tab., wykr.
Twórcy
autor
  • Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
  • Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
  • School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
  • Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
Bibliografia
  • 1. Adeel, M., Song, X., Wang, Y., Francis, D., Yang, Y., 2017. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Internat. 99, 107-119. https://doi.org/10.1016/j.envint.2016.12.010
  • 2. Andersson, C., Katsiadaki, I., Lundstedt-Enkel, K., Orberg, J., 2007. Effects of 17α-ethynylestradiol on EROD activity, spiggin and vitellogenin in three-spined stickleback (Gasterosteus aculeatus). Aquat. Toxicol. 83, 33-42. https://doi.org/10.1016/j.aquatox.2007.03.008
  • 3. Arditsoglou, A., Voutsa, D., 2012. Occurrence and partitioning of endocrine-disrupting compounds in the marine environment of Thermaikos Gulf, Northern Aegean Sea, Greece. Mar. Pollut. Bull. 64, 2443-2452. https://doi.org/10.1016/j.marpolbul.2012.07.048
  • 4. Bakos, K., Kovács, R., Staszny, Á., Sipos, D.K., Urbányi, B., Müller, F., Csenki, Z., Kovács, B., 2013. Developmental toxicity and estrogenic potency of zearalenone in zebrafish (Daniorerio). Aquatic toxicology (Amsterdam, Netherlands) 136—137, 13-21. https://doi.org/10.1016/j.aquatox.2013.03.004
  • 5. Beck, I.-C., Bruhn, R., Gandrass, J., 2006. Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere 63, 1870-1878. https://doi.org/10.1016/j.chemosphere.2005.10.022
  • 6. Beck, I.-C., Bruhn, R., Gandrass, J., Ruck, W., 2005. Liquid chromatography-tandem mass spectrometry analysis of estrogenic compounds in coastal surface water of the Baltic Sea. J. Chromatogr. A 1090, 98-106. https://doi.org/10.1016/j.chroma.2005.07.013
  • 7. Benassayag, C., Perrot-Applanat, M., Ferre, F., 2002. Phytoestrogens as modulators of steroid action in target cells. J. Chromatogr. B 777, 233-248. https://doi.org/10.1016/S1570-0232(02)00340-9
  • 8. Białk-Bieli ́nska, A., Kumirska, J., Borecka, M., Caban, M., Paszkiewicz, M., Pazdro, K., Stepnowski, P., 2016. Selected analytical challenges in the de-termination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J. Pharmaceut. Biomed. 121, 271-296. https://doi.org/10.1016/j.jpba.2016.01.016
  • 9. Busetti, F., Backe, W.J., Bendixen, N., Maier, U., Place, B., Giger, W., Field, J.A., 2012. Trace analysis of environmental matrices by large-volume injection and liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 402, 175-186. https://doi.org/10.1007/s00216-011-5290-y
  • 10. Caldwell, D.J., Mastrocco, F., Anderson, P.D., Länge, R., Sumpter, J.P., 2012. Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ. Toxicol. Chem. 31, 1396-1406. https://doi.org/10.1002/etc.1825
  • 11. Campbell, C.G., Borglin, S.E., Green, F.B., Grayson, A., Wozei, E., Stringfellow, W.T., 2006. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 65, 1265-1280. https://doi.org/10.1016/j.chemosphere.2006.08.003
  • 12. Chen, X.-W., Zhao, J.-L., Liu, Y.-S., Hu, L.-X., Liu, S.-S., Ying, G.-G., 2016. Evaluation of estrogenic activity in the Pearl River by using effect-directed analysis. Environ. Sci. Pollut. Res. 23, 21692-21702. https://doi.org/10.1007/s11356-016-7377-7
  • 13. Cotrim, G., Fahning, C.S., Rocha, G.O.D., Hatje, V., 2016. Endocrine disruptors: strategies for determination and occurrence in marine environments. Revista de Gestão Costeira Integrada 16, 299-326. https://doi.org/10.5894/rgci669
  • 14. Deich, C., Frazão, H.C., Appelt, J.-S., Li, W., Pohlmann, T., Waniek, J.J. , 2021. Occurrence and distribution of estrogenic substances in the northern South China Sea. Sci. Total Environ. 145239. https://doi.org/10.1016/j.scitotenv.2021.145239.
  • 15. Deich, C., Kanwischer, M., Jähne, M., Waniek, J.J., 2020. Patterns of estrogenic activity in the Baltic Sea. Chemosphere 240, 124870. https://doi.org/10.1016/j.chemosphere.2019.124870
  • 16. Frische, T., Faust, M., Meyer, W., Backhaus, T., 2009. Toxic masking and synergistic modulation of the estrogenic activity of chemical mixtures in a yeast estrogen screen (YES). Environ. Sci. Pollut. Res. 16, 593-603. https://doi.org/10.1007/s11356-009-0184-7
  • 17. Gong, J., Duan, D., Yang, Y., Ran, Y., Chen, D., 2016. Seasonal variation and partitioning of endocrine disrupting chemicals in waters and sediments of the Pearl River system, South China. Environ. Pollut. 219, 735-741. https://doi.org/10.1016/j.envpol.2016.07.015
  • 18. Gong, J., Ran, Y., Chen, D., Yang, Y., Ma, X., 2009. Occurrence and environmental risk of endocrine-disrupting chemicals in Surface waters of the Pearl River. South China. Environ. Monitor. Assess. 156, 199-210. https://doi.org/10.1007/s10661-008-0474-4
  • 19. Grasshoff, K., Almgren, T., 1983. Methods of seawater analysis. Verl. Chemie, Weinheim, 419 pp.
  • Griffith, D.R., Soule, Kido, M., C., Eglinton, T.I., Kujawinski, E.B., Gschwend, P.M., 2016. Steroidal estrogen sources in a sewage-impacted coastal ocean. Environ. Sci.-Proc. Imp. 18, 981-991. https://doi.org/10.1039/C6EM00127K
  • 20. Hartmann, N., Erbs, M., Wettstein, F.E., Schwarzenbach, R.P., Bucheli, T.D., 2007. Quantification of estrogenic mycotoxins at the ng/L level in aqueous environmental samples using deuterated internal standards. J. Chromatogr. A 1138, 132-140. https://doi.org/10.1016/j.chroma.2006.10.045
  • 21. Havens, S.M., Hedman, C.J., Hemming, J.D.C., Mieritz, M.G., Shafer, M.M., Schauer, J.J., 2010. Stability, preservation, and quantification of hormones and estrogenic and androgenic activities in surface water runoff. Environ. Toxicol. Chem. 29, 2481-2490. https://doi.org/10.1002/etc.307
  • 22. He, X., Xu, D., Bai, Y., Pan, D., Chen, C.-T.A., Chen, X., Gong, F., 2016. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea. Cont. Shelf Res. 124, 117-124. https://doi.org/10.1016/j.csr.2016.06.003
  • 23. Hettwer, K., Jähne, M., Frost, K., Giersberg, M., Kunze, G., Trimborn, M., Reif, M., Türk, J., Gehrmann, L., Dardenne, F., de Croock, F., Abraham, M., Schoop, A., Waniek, J.J., Bucher, T., Simon, E., Vermeirssen, E., Werner, A., Hellauer, K., Wallentits, U., Drewes, J.E., Dietzmann, D., Routledge, E., Beres-ford, N., Zietek, T., Siebler, M., Simon, A., Bielak, H., Hollert, H., Müller, Y., Harff, M., Schiwy, S., Simon, K., Uhlig, S., 2018. Validation of Arxula Yeast Estrogen Screen assay for detection of estrogenic activity in water samples: Results of an international interlaboratory study. Sci. Total. Environ. 621, 612-625. https://doi.org/10.1016/j.scitotenv.2017.11.211
  • 24. Hotchkiss, A.K., Rider, C.V., Blystone, C.R., Wilson, V.S., Har tig, P.C., Ankley, G.T., Foster, P.M., Gray, C.L., Gray, L.E., 2008. Fifteen years after "Wingspread"—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol. Sci. 105, 235-259. https://doi.org/10.1093/toxsci/kfn030
  • 25. Jarošová, B., Blãha, L., Giesy, J.P., Hilscherová, K., 2014. What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe? Environ. Int. 64, 98-109. https://doi.org/10.1016/j.envint.2013.12.009
  • 26. Jarošová, B., Javurek, J., Adamovský, O., Hilscherová, K., 2015. Phytoestrogens and mycoestrogens in surface waters—Their sources, occurrence, and potential contribution to estrogenic activity. Environ. Int. 81, 26-44. https://doi.org/10.1016/j.envint.2015.03.019
  • 27. Jiang, R., Liu, J., Huang, B., Wang, X., Luan, T., Yuan, K., 2020. Assessment of the potential ecological risk of residual endocrine-disrupting chemicals from wastewater treatment plants. Sci. Total Environ. 714, 136689. https://doi.org/10.1016/j.scitotenv.2020.136689
  • 28. Kolodziej, E.P., Harter, T., Sedlak, D.L., 2004. Dairy wastewater, aqua-culture, and spawning fish as sources of steroid hormones in the aquatic environment. Environ. Sci. Technol. 38, 6377-6384. Kolodziej, E.P., Sedlak, D.L., 2007. Rangeland grazing as a source of steroid hormones to surface waters. Environ. Sci. Technol. 41, 3514-3520. https://doi.org/10.1021/es063050y
  • 29. Kumar, V., Nakada, N., Yasojima, M., Yamashita, N., Johnson, A.C., Tanaka, H., 2009. Rapid determination of free and conjugated estrogen in different water matrices by liquid chromatography-tandem mass spectrometry. Chemosphere 77, 1440-1446. https://doi.org/10.1016/j.chemosphere.2009.08.052
  • 30. Kunz, P.Y., Kienle, C., Carere, M., Homazava, N., Kase, R., 2015. In vitro bioassays to screen for endocrine active pharmaceuticals in surface and waste waters. J. Pharmaceut. Biomed. Anal. 106, 107-115. https://doi.org/10.1016/j.jpba.2014.11.018
  • 31. Lu, J., Zhang, C., Wu, J., Zhang, Y., Lin, Y., 2020. Seasonal distribution, risks, and sources of endocrine disrupting chemicals in coastal waters: Will these emerging contaminants pose potential risks in marine environment at continental-scale? Chemosphere 247, 125907. https://doi.org/10.1016/j.chemosphere.2020.125907
  • 32. Magi, E., Di Carro, M., 2018. Marine environment pollution: the contribution of mass spectrometry to the study of seawater. Mass Spectrom. Rev. 37, 492-512. https://doi.org/10.1002/mas.21521
  • 33. Morthorst, J.E., Brande-Lavridsen, N., Korsgaard, B., Bjerregaard, P., 2014. 17β-estradiol causes abnormal development in embryos of the viviparous eelpout. Environ. Sci. Technol. 48, 14668-14676. https://doi.org/10.1021/es5046698
  • 34. Neale, P.A., Escher, B.I., Leusch, F.D.L., 2015. Understanding the implications of dissolved organic carbon when assessing antagonism in vitro: An example with an estrogen receptor assay. Chemosphere 135, 341-346. https://doi.org/10.1016/j.chemosphere.2015.04.084
  • 35. Ni, H.-G., Lu, F.-H., Luo, X.-L., Tian, H.-Y., Wang, J.-Z., Guan, Y.-F., Chen, S.-J., Luo, X.-J., Zeng, E.Y., 2008. Assessment of sampling designs to measure riverine fluxes from the Pearl River Delta, China to the South China Sea. Environ. Monitor. Assess. 143, 291-301. https://doi.org/10.1007/s10661-007-9982-x
  • 36. Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., Wang, Z., 2008. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ. 397, 158-166. https://doi.org/10.1016/j.scitotenv.2008.02.059
  • 37. Petrovic, M., 2014. Methodological challenges of multi-residue analysis of pharmaceuticals in environmental samples. Trends in Environ. Anal. Chem. 1, e25-e33. https://doi.org/10.1016/j.teac.2013.11.004
  • 38. Pojana, G., Gomiero, A., Jonkers, N., Marcomini, A., 2007. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ. Int. 33, 929-936. https://doi.org/10.1016/j.envint.2007.05.003
  • 39. Prochazkova, T., Sychrova, E., Vecerkova, J., Javurkova, B., Otoupalikova, A., Pernica, M., Simek, Z., Smutna, M., Lepsova-Skacelova, O., Hilscherova, K., 2018. Estrogenic activity and contributing compounds in stagnant water bodies with massive occurrence of phytoplankton. Water Res. 136, 12-21. https://doi.org/10.1016/j.watres.2018.02.040
  • 40. Purdom, C.E., Hardiman, P.A., Bye, V.V.J., Eno, N.C., Tyler, C.R., Sumpter, J.P., 1994. Estrogenic effects of effluents from sewage treatment works. Chem. Ecol. 8, 275-285. https://doi.org/10.1080/02757549408038554
  • 41. Rocha, M.J., Cruzeiro, C., Reis, M., Pardal, M.A., Rocha, E., 2014. Spatial and seasonal distribution of 17 endocrine disruptor compounds in an urban estuary (Mondego River, Portugal): evaluation of the estrogenic load of the area. Environ. Monitor. Assess. 186, 3337-3350. https://doi.org/10.1007/s10661-014-3621-0
  • 42. Rocha, M.J., Cruzeiro, C., Reis, M., Pardal, M.Â., Rocha, E., 2016. Pollution by oestrogenic endocrine disruptors and β-sitosterol in a south-western European river (Mira, Portugal). Environ. Monit. Assess. 188, 240. https://doi.org/10.1007/s10661-016-5236-0
  • 43. Sarasquete, C., Ubeda-Manzanaro, M., Ortiz-Delgado, J.B., 2020. Soya isoflavones, genistein and daidzein, induce differentia transcriptional modu-lation in the ovary and testis of zebrafish Danio rerio. Aquat. Biol. 29, 79-91. https://doi.org/10.3354/ab00726
  • 44. Trufelli, H., Palma, P., Famiglini, G., Cappiello, A., 2011. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom. Rev. 30, 491-509. https://doi.org/10.1002/mas.20298
  • 45. Wang, L., Ying, G.-G., Zhao, J.-L., Liu, S., Yang, B., Zhou, L.-J., Tao, R., Su, H.-C., 2011. Assessing estrogenic activity in Surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environ. Pollut. 159, 148-156. https://doi.org/10.1016/j.envpol.2010.09.017
  • 46. Woźny, M., Dobosz, S., Hliwa, P., Gomullka, P., Król, J., Obremski, K., Blahova, J., Svobodova, Z., Michalik, O., Ocalewicz, K., Brzuzan, P., 2020. Feed-borne exposure to zearalenone impairs reproduction of rainbow trout. Aquaculture 528, 735522. https://doi.org/10.1016/j.aquaculture.2020.735522
  • 47. Xie, H., Hao, H., Xu, N., Liang, X., Gao, D., Xu, Y., Gao, Y., Tao, H., Wong, M., 2019. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, dis-tribution, potential sources, and health risk assessment. Sci. Total Environ. 659, 230-239. https://doi.org/10.1016/j.scitotenv.2018.12.222
  • 48. Xu, H., Yang, J., Wang, Y., Jiang, Q., Chen, H., Song, H., 2008. Exposure to 17alpha-ethynylestradiol impairs reproductive functions of both male and female zebrafish (Danio rerio). Aquat. Toxicol. 88, 1-8. https://doi.org/10.1016/j.aquatox.2008.01.020
  • 49. Xu, W., Yan, W., Huang, W., Miao, L., Zhong, L., 2014. Endocrinedisrupting chemicals in the Pearl River Delta and coastal environment: sources, transfer, and implications. Environ. Geochem. Hlth. 36, 1095-1104. https://doi.org/10.1007/s10653-014-9618-3
  • 50. Yu, Y., Huang, Q., Wang, Z., Zhang, K., Tang, C., Cui, J., Feng, J., Peng, X., 2011. Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. J. Environ. Monit. 13, 871-878. https://doi.org/10.1039/c0em00602e
  • 51. Zha, J., Sun, L., Spear, P.A., Wang, Z., 2008. Comparison of ethinylestra-diol and nonylphenol effects on reproduction of Chinese rare minnows (Gobiocypris rarus). Ecotox. Environ. Safe. 71, 390-399. https://doi.org/10.1016/j.ecoenv.2007.11.017
  • 52. Zhang, L.-P., Wang, X.-H., Ya, M.-L., Wu, Y.-L., Li, Y.-Y., Zhang, Z.-l., 2014. Levels of endocrine disrupting compounds in South China Sea. Mar. Pollut. Bull. 85, 628-633. https://doi.org/10.1016/j.marpolbul.2013.12.040
  • 53. Zhang, R., Zhu, X., Yang, C., Ye, L., Zhang, G., Ren, J., Wu, Y., Liu, S., Zhang, J., Zhou, M., 2019. Distribution of dissolved iron in the Pearl River (Zhujiang) Estuary and the northern continental slope of the South China Sea. Deep Sea Res. Pt. II 167, 14-24. https://doi.org/10.1016/j.dsr2.2018.12.006
  • 54. Zhao, J.-L., Ying, G.-G., Chen, F., Liu, Y.-S., Wang, L., Yang, B., Liu, S., Tao, R., 2011. Estrogenic activity profiles and risks in surface waters and sediments of the Pearl River system in South China assessed by chemical analysis and in vitro bioassay. J. Environ. Monit. 13, 813-821. https://doi.org/10.1039/C0EM00473A
  • 55. UN, 2018. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision, custom data acquired via website. https://population.un.org/wup/DataQuery/ (date of access: 2021-06-13).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02c25951-942e-4c4b-a10c-121cc6523bc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.