Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To solve the contradiction between reducing water-insoluble content and maintaining high viscosity in the preparation of modified guar gum for oilfi eld fracturing fluid, in this work, sodium 3-chloro-2-hydroxypropylsulfonate was used as a modifier to prepare sulfonated guar gum. Orthogonal and single-factor extrapolation experiments were conducted to explore the effects of reaction conditions and the optimal process was determined as follows: reaction temperature of 26° C, reaction time of 2.0 h, sodium hydroxide as a mass fraction of guar gum of 1.0%, and sodium 3-chloro-2-hydroxypropyl sulfonate dosage as a mass fraction of guar gum of 0.5%. Furtherly, the temperature stability, filtration property, and inhibition of formation clay of the sulfonated products were investigated. The results showed that the apparent viscosity of 0.6% solution of guar gum was increased by 33%, the water-insoluble content was decreased by 0.42%, and the temperature stability, filtration resistance, and clay inhibition were all improved. Especially, the viscosity of cross-linked sulfonated guar gum is 100% higher than that of unmodified guar gum. The structure of sulfonated guar gum was characterized and confi rmed by infrared spectrum, DSC, thermogravimetric, and elemental analysis.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
29--38
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wz.
Twórcy
autor
- Xi’an Changqing Chemical Group Co. Ltd, PetroChina Changqing Oilfield Co. Ltd, Xi’an, 710018, China
autor
- Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi’an Shiyou University, Xi’an, 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University, Xi’an 710065, China
autor
- Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi’an Shiyou University, Xi’an, 710065, China
autor
- Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi’an Shiyou University, Xi’an, 710065, China
autor
- Xi’an Changqing Chemical Group Co. Ltd, PetroChina Changqing Oilfield Co. Ltd, Xi’an, 710018, China
autor
- Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi’an Shiyou University, Xi’an, 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University, Xi’an 710065, China
Bibliografia
- 1. Tian, W., Wang, Q., Liu, X., Du, W., Zhang, J., Gang, Ch. (2022). Investigation of Dioscorea oppositifolia L. as green lubricant in water-based drilling fluids. Green Materials 10(4), 169–175. DOI: 10.1680/jgrma.21.00017.
- 2. Gao, L., Gu, X., Sun, Y., Du, W., Zhang, J., Chen, G. (2022). Modification of waste persimmon peel and application as a green additive for water-based drilling fluid. Green Materials, DOI: 10, 137–144. DOI: 10.1680/jgrma.21.00016.
- 3. Gu, X., Zhang, H., Du, W., Zhang, Z., Zhu, S., Chen, G. (2021). Modification and application of walnut peel extract as acidic corrosion inhibitor. J. Biobased Mat. Bioenergy 15(6), 820–825. DOI: 10.1166/jbmb.2021.2138.
- 4. Du, W., Wang, X., Kang, L., Su, Y., Huang, X., Chen, G., Zhang, J. (2020). Application of carboxymethylated carob bean gum as eco-friendly drilling fluid additive. Revue Roumaine de Chimie 65(4), 387–393. DOI: 10.33224/rrch/2020.65.4.08.
- 5. Zhou, R., Liu, S., Han, Ch., Cai, M., Qu, Ch., Tang, Y. (2023). Study of modified konjac gum used as green flocculant for waste drilling fluid. Desalination and Water Treatment 299, 172–178. DOI: 10.5004/dwt.2023.29669.
- 6. Zhang, J., Zhang, Y., Hu, L., Zhang, J., Chen, G. (2015). Modification and application of a plant gum as eco-friendly drilling fluid additive. Iranian J. Chem. Chem. Engin. 34(2), 103–108.
- 7. Chen, G., Gao, L., Yan, S., Xuefan, G., Weimin, H., Weichao, D., Zhang, J., Qu, Ch. (2019). A green shale inhibitor developed from lignin sulfonate and a mechanism study.J. Biobased Mater. Bioenergy 13, 778–783. DOI: 10.1166/jbmb.2019.1908.
- 8. Zhang, J., Zhang, F., Lee, Z., Luo, P., Jeje, A.A., Chen, G. (2018). A novel botany phenol thinner derived from lignin and its application in polymer drilling fluid. Iranian J. Chem. Chem. Engin. 37, 241–246. DOI: 10.30492/IJCCE.2018.32914.
- 9. Gu, X., Chen, Ch., Zhang, J., Zhang, J., Chen, G., Ma, Ch., Zhang, Z. (2017). Stabilization of montmorillonite by ammoniated lignosulfonates and its use in water-based drilling fluid. Sci. Adv. Mater. 9, 928–933. DOI: 10.1166/sam.2017.3065.
- 10. Chen, G., Zhang, J., Yang, N., Ma, Y-F. (2014). The evaluation of sodium hydroxymethyl lignosulfonate as an ecofriendly drilling fluid additive. Petrol. Sci. Technol. 32, 1816–1823. DOI: 10.1080/10916466.2011.642916.
- 11. Zhang, J., Chen, G., Yang, N.-W, Wang, Y.-G. (2014). Preparation of nitration-oxidation lignosulfonate as an ecofriendly drilling fluid additive. Petrol. Sci. Technol. 32, 1661–1668. DOI: 10.1080/10916466.2011.652334.
- 12. George, A., Shah, P.A., Shrivastav, P.S. (2019). Guar gum: Versatile natural polymer for drug delivery applications. Europ. Polymer J. 112, 722–735.
- 13. Gupta, A.P., Verma, D.K. (2014). Guar gum and their derivatives: a research profile. Int. J. Adv. Res. 2, 680–690.
- 14. Hasan, A.M.A., Abdel-Raouf, M.E. (2018). Applications of guar gum and its derivatives in petroleum industry: A review. Egyptian J. Petroleum 27, 1043–1050. DOI: 10.1016/j. ejpe.2018.03.005.
- 15. Thombare, N., Jha, U., Mishra, S., Siddiqui, M. (2016). Guar gum as a promising starting material for diverse applications: A review. Internat. J. Biol. Macromol, 88, 361–372. DOI: 10.1016/j.ijbiomac.2016.04.001.
- 16. Li, G., Lu, S., Pang, J. (2012). Preparation of acrylonitrilebutadiene-styrene resin with high performances by bi-seeded emulsion grafting copolymerization. Abstracts of Papers of the American Chemical Society, 243, 26–35.
- 17. Liu, X., Guo, Q., Ren, S., Guo, J., Wei, Ch. (2022). Synthesis of starch-based flocculant by multi-component grafting copolymerization and its application in oily wastewater treatment. J. Appl. Polymer Sci. 140, 214–228. DOI: 10.1002/app.53356.
- 18. Lapasin, R., DE Lorenzi, L., Pricl, S., Torriano, G. (1995). Flow properties of hydroxypropyl guar gum and its long-chain hydrophobic derivatives. Carbohydrate Polymers, 28, 195–202. DOI: 10.1016/0144-8617(95)00134-4.
- 19. Dodi, G., Hritcu, D., Popa, M.I. (2011). Carboxymethylation of guar gum: synthesis and characterization. Cellulose Chem.Technol. 45, 171–178.
- 20. Song, Ch., Gao, Ch., Fatehi, P., Wang, S., Jiang, Ch., Kong, F. (2023). Influence of structure and functional group of modified kraft lignin on adsorption behavior of dye. Internat. J. Biol. Macromol. 240, 124368. DOI: 10.1016/j.ijbiomac.2023.124368.
- 21. Du, W.H., Wang, X.Y., Kang, L.X., Zhang, J. (2020). Application of carboxymethylated carob bean gum as eco-friendly water based drilling fluids additive. Revue Roumaine Dechimie, 65, 387–393. DOI: 10.33224/rrch/2020.65.4.08.
- 22. Rodrigues, M.I., Iemma, A.F., (2014). Experimental design and process optimization. Book. DOI: 10.1201/b17848.
- 23. Régnière, J., Powell, J., Bentz, B., Neralis, V. (2012). Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. J. Insect Phys. 58, 634–647. DOI: 10.1016/j.jinsphys.2012.01.010.
- 24. Cui, W., Li, X., Zhou, S., Weng, J. (2007). Investigation on process parameters of electrospinning system through orthogonal experimental design. J. Appl. Polymer Sci. 103, 3105–3112. DOI: 10.1002/APP.25464.
- 25. Chengxue, W. (2007). Effect of synthetic conditions on performance of hydroxypropyl guar gum. Spec. Petrochem. 04, 45–48.
- 26. Wang, T., Ye, J. (2023). Rheological and fracturing characteristics of a cationic guar gum. Internat. J. Biol. Macromol. 224, 196–206. DOI: 10.1016/j.ijbiomac.2022.10.116.
- 27. Wang, S., Tang, H., Guo, J., Wang, K. (2016). Effect of pH on the rheological properties of borate crosslinked hydroxypropyl guar gum hydrogel and hydroxypropyl guar gum. Carbohyd. Polym. 147, 455–463. DOI: 10.1016/j.carbpol.2016.04.029.
- 28. Zhang, B., Wang, Q., Wei, Y., Wei, W., Du, W., Zhang, J., Chen, G., Slany, M. (2022). Preparation and swelling inhibition of mixed metal hydroxide to bentonite clay. Minerals 12, 459. DOI: 10.3390/min12040459.
- 29. Du, W., Wang, X., Bi T., Liu, M., Zhang, J., Chen, G. (2021). Synthesis and inhibitive mechanism of a novel clay hydration inhibitor for water-based drilling fluids, Mater. Sci. Medziagotyra, 27, 128–142. DOI: 10.5755/j02.ms.23947.
- 30. Kato, Y., Haniu, S., Nakajima, Y., Akita, F., Shen, J.-F., Noguchi, T. (2019). FTIR microspectroscopic analysis of the water oxidation reaction in a single photosystem II microcrystal. J. Phys. Chem. B, 124, 121–127. DOI: 10.1021/acs.jpcb.9b10154.
- 31. Zhao, Y., He, J., Han, X., Tian, X., Deng, M., Chen, W., Jiang, B. (2012). Modification of hydroxypropyl guar gum with ethanolamine. Carbohyd. Polym. 90, 988–992. DOI: 10.1016/j. carbpol.2012.06.032.
- 32. Tang, H., Li Y., Sun, M., Wang, X. (2012). Preparation and property of crosslinking guar gum. Polym. J. 44, 211–216. DOI: 10.1038/pj.2011.117.
- 33. Pal, S., Mal, D., Singh, R.P. (2007). Synthesis and characterization of cationic guar gum: a high performance flocculating agent. J. Appl. Polym. Sci. 105, 3240–3245. DOI: 10.1002/APP.26440.
- 34. Qiu, L., Shen, Y., Wang, T., Wang, Ch. (2018). Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum. Internat. J. Biol. Macromol. 117, 974–982. DOI: 10.1016/j.ijbiomac.2018.05.072.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02c1fde7-99d4-49bd-b062-a8e2a3fcf489