PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of processing maps and numerical modelling for identification of parameters and limitations of hot forging process of 80MnSi8-6 steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The processing maps developed by dynamic material modelling (DMM) method are now widely used in the design of hot forming processes. However, this applies to those processes that are relatively fast or are carried out under isothermal conditions, when it is possible to maintain the deformation parameters within the processing window. In the case of multi-stage free forging, the temperature successively decreases during subsequent operations and is increased during inter-process reheating. Under such conditions, processing maps in direct form are not applicable. The proposed solution is to implement the data obtained by the DMM method into calculations carried out by the finite element method (FEM). This approach leads to obtain the distributions of DMM parameters in the volume of the feedstock at successive forging stages. Selected results of a combined DMM/FEM analysis of a multi-stage hot forging process of 80MnSi8-6 steel are presented. The starting data for the analysis were the flow curves of this material, determined from compression tests. The processing maps were developed and processing windows were determined. The results of the DMM analysis were verified by microstructure observations. Data from the DMM analysis were implemented into QForm software using LUA scripts. An integrated FEM/DMM numerical analysis of the process of a multi-step hot free forging of an example product was performed. The geometry of the tools and a sequence of operations were developed. The distributions of the DMM parameters and the hot deformation activation energy in the forging volume after successive forging sequences were analyzed.
Rocznik
Strony
art. e240, 1--22
Opis fizyczny
Bibliogr. 52 poz., il., tab., wykr.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
  • Institut für Metallformung, TU Bergakademie Freiberg, Freiberg, Germany
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Materials Engineering, Silesian University of Technology, Katowice, Poland
autor
  • Institut für Metallformung, TU Bergakademie Freiberg, Freiberg, Germany
Bibliografia
  • 1. Bhadeshia HKDH. Atomic mechanism of the bainite transformation. J Heat Treatm Mat. 2017;72(6):340-5.
  • 2. Zhang FC, Wang TS, Zhang P, Zhang CL, Lv B, Zhang M, Zhang YZ. A novel method for the development of a low-temperature bainitic microstructure in the surface layer of low-carbon steel. Scr Mater. 2008;59:294-6.
  • 3. Królicka A, Żak A, Kuziak R, Radwański K, Ambroziak A. Decomposition mechanisms of continuously cooled bainitic rail in the critical heat-affected zone of a flash-butt welded joints. Mater Sci-Pol. 2021;39(4):615-25. https://doi.org/10.2478/ msp-2022-0002.
  • 4. Avishan B, Talebi P, Tekeli S, Yazdani S. Producing nanobainite on carburized surface of a low-carbon low-alloy steel. JMEPEG. 2023;32:211-20.
  • 5. Zhu Z, Han J, Li H, Lu C. High temperature processed high Nb X80 steel with excellent heat-affected zone toughness. Mater Lett. 2016;163:171-4.
  • 6. Garcia-Mateo C, Caballero FG, Sourmail T, Smanio V, de Andres CG. Industrialised nanocrystalline bainitic steels. Design approach. Int J Mater Res. 2014;105(8):725-34.
  • 7. Królicka A, Janik A, Żak A, Radwański K. The qualitative-quantitative approach to microstructural characterization of nanostructured bainitic steels using electron microscopy methods. Mater Sci Pol. 2021;39(2):188-99. https://doi.org/10.2478/msp-2021-0017.
  • 8. Sourmail T, Garcia-Mateo C, Caballero FG, Morales-Rivas L, Rementeria R, Kuntz M. Tensile ductility of nanostructured bainitic steels: influence of retained austenite stability. Metals. 2017;7:31-7.
  • 9. Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Design of novel high strength bainitic steels: Part 2. Mater Sci Technol. 2001;17:517-22.
  • 10. Sourmail T, Caballero FG, Garcia-Mateo C, Smanio V, Ziegler C, Kuntz M, Elvira R, Leiro A, Vuorinen E, Teeri T. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications. Mater Sci Technol. 2013;29(10):1166-73.
  • 11. Rios-Diez O, Aristizabal-Sierra R, Serna-Giraldo C, Eres-Castellanos A, Garcia-Mateo C. Wear behavior of nanostructured carboaustempered cast steels under rolling-sliding conditions. J Mater Res Technol. 2021;11:1343-55.
  • 12. Du Y, Wang X, Zhang D, Wang X, Ju C, Jiang B. A superior strength and sliding wear resistance combination of ductile iron with nanobainitic matrix. J Mater Res Technol. 2021;11:1175-83.
  • 13. Mishra B, Sukumar G, Senthil PP, Reddy PRS, Singh BB, Ramakrishna B, Kumar KS, Madhu V. Ballistic efficacy of carbide free high strength nano-structured bainitic armour steels. Def Sci J. 2023;73(2):131-9.
  • 14. Kowalczyk K, Jabłońska M, Rusz S, Junak G. Influence of recrystallization annealing on the properties and structure of low-carbon ferritic steel IF. Arch Metall Mater. 2018;63(4):1957-61. https://doi.org/10.24425/amm.2018.125130.
  • 15. Sourmai T. Bainite and superbainite in long products and forged applications. HTM. 2017;72(6):371-8.
  • 16. Garcia-Mateo C, Caballero FG, Sourmail T, Cornide J, Smanio V, Elvira R. Composition design of nanocrystalline bainitic steels by diffusionless solid reaction. Met Mater Int. 2014;20(3):405-15.
  • 17. Jabłońska MB, Śmiglewicz A, Niewielski G. The effect of strain rate on the mechanical properties and microstructure of the high-Mn steel after dynamic deformation tests. Arch Metall Mater. 2015;60(2):577-80. https://doi.org/10.1515/amm-2015-017.
  • 18. Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Very strong low temperature bainite. Mater Sci Technol. 2002;18:279-84.
  • 19. Garcia-Mateo C, Caballero FG. Design of carbide-free lowtemperature ultra high strength bainitic steels. Int J Mat Res. 2007;98(2):137-43.
  • 20. Leiro A, Vuorinen E, Sundin K-G, et al. Wear of nano-structured carbide-free bainitic steels under dry rolling-sliding conditions. Wear. 2013;298-299:42-7.
  • 21. Prasad YVRK, Gegel HL, Doraivelu SM, Malas JC, Morgan JT, Lark KA, Barker DR. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall Mater Trans A. 1984;15:1883-9.
  • 22. Prasad YVRK, Sasidhara S, editors. Hot working guide: a compendium of processing maps. Materials Park: ASM International; 1977. p. 108-10.
  • 23. Raj R. Development of a processing map for use in warm-forming and hot-forming processes. Metall Trans A. 1981;12:1089-97.
  • 24. Babu KA, Mandal S, Athreya C, Shakthipriya B, Sarma VS. Hot deformation characteristics and processing map of a phosphorous modifed super austenitic stainless steel. Mater Des. 2017;115:262-75.
  • 25. Li H, Wang H, Liang X, Liu H, Liu Y, Zhang X. Hot deformation and processing map of 2519a aluminum alloy. Mater Sci Eng A. 2011;528:1548-52.
  • 26. Krawczyk J, Łukaszek-Sołek A, Śleboda T, Bała P, Bednarek S, Wojtaszek M. Strain inducted recrystallization in hot forged Inconel 718 alloy. Arch Metall Mater. 2012;57(2):593-603. https://doi.org/10.2478/v10172-012-0063-y.
  • 27. Jablonska MB, Kowalczyk K. Microstructural aspects of energy absorption of high manganese steels. Procedia Manuf. 2019;27:91-7.
  • 28. Prasad YVRK, Seshacharyulu T. Modelling of the hot deformation for microstructural control. Int Mater Rev. 1998;43:243-58.
  • 29. Chegini M, Aboutalebi MR, Seyedein SH, Ebrahimi GR, Jahazi M. Study on hot deformation behavior of AISI 414 martensitic stainless steel using 3D processing map. J Manuf Process. 2020;56:916-27.
  • 30. Zhou PW, Song YR, Jiang HW, Wu YC, Zong YY. Hot deformation behavior and processing maps of BG801 bearing steel. J Mater Res Technol. 2022;18:3725-38.
  • 31. Fu X, Bai P, Yang J. Hot deformation characteristics of 18Cr-5Ni-4Cu-N stainless steel using constitutive equation and processing map. Metals. 2020;10(82):1-15. https://doi.org/10. 3390/met10010082.
  • 32. Li Q, Bu H, Han J, Li M. Dynamic recrystallization behavior and processing maps of 5CrNiMoV steel during hot deformation. Mater Res Express. 2023;10: 046519. https://doi.org/10.1088/ 2053-1591/acce22.
  • 33. Ye L, Zhai Y, Zhou L, Wang H, Jiang P. The hot deformation behavior and 3D processing maps of 25Cr2Ni4MoV steel for a super-large nuclear-power rotor. J Manuf Processes. 2020;59:535-44.
  • 34. Zeng J, Wang F, Dong S, Jin L, Fan Y, Dong J. Optimization of hot backward extrusion process parameters for fat bottom cylindrical parts of Mg-8Gd-3Y alloy based on 3D processing maps. Int J Adv Manuf Technol. 2020;108:2149-64.
  • 35. Chen X, Si Y, Bai R, Zhang X, Li Z. Hot formability study of Cr5 alloy steel by integration of FEM and 3D processing maps. Materials. 2022;15(4801):1-22. https://doi.org/10.3390/ma15144801.
  • 36. Chen X, Du Y, Lian T, Du K, Huang T. Hot workability of ultrasupercritical rotor steel using a 3-D processing map based on the dynamic material model. Materials. 2020;13:20.
  • 37. Hawryluk M, Rychlik M, Ziemba J, Jasiak K, Lewandowski F, Dudkiewicz Ł. Analysis of the production process of the forked forging used in the excavator drive system in order to improve the currently implemented technology by the use of numerical modeling. Mater Sci-Pol. 2021;39(2):227-39. https://doi.org/10. 2478/msp-2021-0020.
  • 38. Liu J, Cui Z, Li C. Analysis of metal workability by integration of FEM and 3-D processing maps. J Mater Process Technol. 2008;205:497-505.
  • 39. Lin CN, Tzeng YC, Lee SL, Fuh YK, Łukaszek-Sołek A, Lin CY, Chen MC, Pan TA. Optimization of hot deformation processing parameters for as-extruded 7005 alloys through the integration of 3D processing maps and FEM numerical simulation. J Alloys Compd. 2023;948(169804):1-14.
  • 40. Łukaszek-Sołek A. Application of dynamic material model method in drop forging process. Krakow: AGH University of Science and Technology Press; 2015.
  • 41. Christiansen P, Martins PAF, Bay N. Friction compensation in the upsetting of cylindrical test specimens. Exp Mech. 2016;56:1271-9. https://doi.org/10.1007/s11340-016-0164-z.
  • 42. Gomez-Marquez D, Ledesma-Orozco E, Hino R, Aguilera-Gomez E, Korpała G, Prahl U. Numerical study on the hot compression test for bulk metal forming application. SN Appl Sci. 2022. https://doi.org/10.1007/s42452-022-05093-x.
  • 43. Łyszkowski R, Bystrzycki J. Hot deformation and processing maps of a Fe-Al intermetallic alloy. Mater Charact. 2014;96:196-205.
  • 44. Prasad YVRK, Seshacharyulu T. Modelling of the hot deformation for microstructural control. Int Mater Rev. 1998;43:243-58.
  • 45. Zhu Y, Cao Y, He Q, Zhang J, Luo R, Di H, Huang G, Liu Q. Three-dimensional hot processing map of a nickel-based super-alloy (Alloy 925) established by modified artificial neural network model. Intermetallics. 2022;141: 107433.
  • 46. Wang L, Liu F, Cheng JJ, Zuo Q, Chen CF. Hot deformation characteristics and processing map analysis for nickel-based corrosion resistant alloy. J Alloys Comp. 2015;623:69-78.
  • 47. Prasad YVRK. Processing maps. J Mater Eng Perform. 2003;12(6):638-45.
  • 48. Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32:1733-59.
  • 49. Reyes-Calderon F, Mejıa I, Cabrera JM. Hot deformation activation energy (QHW) of austenitic Fe-22Mn-1.5Al-1.5Si-0.4C TWIP steels micro alloyed with Nb, V, and Ti. Mater Sci Eng A. 2013;562:46-52.
  • 50. Cabanas N, Penning J, Akdut N, Cooman BC. High-temperature deformation properties of austenitic Fe-Mn alloys. Metall Mater Trans A Phys. 2006;37:3305-15.
  • 51. Zhao H, Qi J, Liu G, Su R, Sun Z. A comparative study on hot deformation behaviours of low-carbon and medium carbon vanadium micro-alloyed steels. J Mater Res Technol. 2020;9(5):11319-31.
  • 52. Jabłońska MB, Jasiak K, Kowalczyk K, Bednarczyk I, Skwarski M, Tkocz M, Gronostajski Z. Deformation behaviour of high manganese steel with addition of niobium under quasi-static tensile loading. Mater Sci-Pol. 2022;40(3):1-11. https://doi.org/10.2478/msp-2022-0029.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02c18218-965c-432c-85fe-6f7ce7c4c940
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.