PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analytical-numerical method for calculating the stationary thermal field in electrical systems with elliptical cross-sections

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, an analytical-numerical approach to calculating a stationary thermal field in the elliptical region is presented. The eigenfunctions of the Laplace operator were determined analytically, whereas the coefficients of the eigenfunctions were obtained numerically. The cooling was modeled with 3rd kind (Hankel’s) boundary condition, where the total heat transfer coefficient was the sum of the convective and radiative components. The method was used to analyze the thermal field in an elliptical conductor and a dielectrically heated elliptical column. The basic parameters of these systems, i.e. their steady-state current rating and the maximum charge temperature, were determined. The results were verified using the finite element method and have been presented graphically.
Rocznik
Strony
art. no. e136738
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland
  • Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland
Bibliografia
  • [1] V.T. Morgan, “The current distribution, resistance and internal inductance of linear power system conductors – a review of explicit equations”, IEEE Trans. Power Deliv. 28(3), 1252‒1262 (2013).
  • [2] R. Suchtanke, Alternating current loss measurement of power cable conductors with large cross sections using electrical methods, Doctoral dissertation, Technischen Universität, Berlin, 2008.
  • [3] R. Sikora, J. Purczyński, and W. Lipiński, “Das magnetische Feld des gleich-stromdurchflossenen Leiters von elliptischen Querschnitt”, Arch. Elektrotechnik 55, 223‒226 (1973).
  • [4] Prasanna Shinde, Jitendra Shukla, and E. Rajkumar, “Busbar profile optimization using finite element analysis”, Int. J. Mech. Prod. Eng. 6(2), 30‒32 (2018).
  • [5] J. Purczyński and R. Sikora, “Application of the Ritz method to calculate the capacity” (in Polish), Arch. Electr. Eng. 22, 611‒619 (1973).
  • [6] W. Peterson, “Calculation of the impedance of a conductor with an elliptic cross-section in the slot of an electric machine”, Arch. Elektrotechnik 60, 63‒68 (1978).
  • [7] W. Peterson, “Electrodynamic forces acting on a conductor with elliptic cross-section in the slot of an electric machine”, Arch. Elektrotechnik 63, 135‒139 (1981).
  • [8] Z.-C. Li, L.-P. Zhang, Y. Wei, M.-G. Lee, and J.Y. Chiang, “Boundary methods for Dirichlet problems of Laplace’s equation in elliptic domains with elliptic holes”, Eng. Anal. Bound. Elem. 61, 91‒103 (2015).
  • [9] L.-P. Zhang, Zi.-C. Li, and M.-G. Lee, “Boundary methods for mixed boundary problems of Laplace’s equation in elliptic domains with elliptic holes”, Eng. Anal. Bound. Elem. 63, 92‒104 (2016).
  • [10] P. Rolicz, “Eddy currents in an elliptic conductor by a transverse alternating magnetic field”, Arch. Elektrotechnik 68, 423‒431 (1985).
  • [11] H. Ragueb, “An analytical study of the periodic laminar forced convection of non-Newtonian nanofluid flow inside an elliptical duct”, Int. J. Heat Mass Transf. 127, 469‒483 (2018).
  • [12] M. Benmerkhi, M. Afrid, and D. Groulx, “Thermally developing forced convection in a metal foam-filled elliptic annulus”, Int. J. Heat Mass Transf. 97, 253‒269 (2016).
  • [13] F.M. Mahfouz, “Heat conduction within an elliptic annulus heated at either CWT or CHF”, Appl. Math. Comput. 266, 357‒368 (2015).
  • [14] W. Piguang, Z. Mi, and D. Xiuli, “Analytical solution and simplified formula for earthquake induced hydrodynamic pressure on elliptical hollow cylinders in water”, Ocean Eng. 148, 149‒160 (2018).
  • [15] M.N. Ozisik, Heat Conduction, John Wiley & Sons, New York, 1980.
  • [16] P. Moon and D.E. Spencer, Field theory for engineers, D. Van Nostrand Company, Inc., Princeton, New York, 1961.
  • [17] M.J. Latif, Heat conduction, Springer-Verlag, Haidelberg, 2009.
  • [18] L.C. Evans, Partial differential equations, American Mathematical Society Providence, Rhode Islands, 2010.
  • [19] D.W. Hahn and M.N. Ozisik, Heat Conduction, John Wiley & Sons, New Jersey, 2012.
  • [20] A. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1972.
  • [21] Wolfram Research, Inc., Mathematica, Illinois: Wolfram Research Inc., 2018.
  • [22] G.J. Anders, Rating of electric power cables: ampacity computations for transmission, distribution, and industrial applications, McGraw-Hill Professional, New York, 1997.
  • [23] M. Hering, Fundamentals of electroheat (part 2), Wydawnictwo Naukowo-Techniczne, Warsaw, 1998, [in Polish].
  • [24] P. Nithiarasu, R.W. Lewis, and K.N. Seetharamu, Fundamentals of the finite element method for heat and mass transfer, John Wiley & Sons, 2016.
  • [25] A. Steckiewicz, J.M. Stankiewicz, and A. Choroszucho, “Numerical and circuit modeling of the low-power periodic WPT systems”, Energies 13(10), 1‒17 (2020).
  • [26] S. Brenner and R.L. Scott, The mathematical theory of finite element methods, Springer, Berlin, 2008.
  • [27] S. Berhausen and S. Paszek, “Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator”, Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 575‒582 (2015).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02bb75fa-b0ee-4b92-a721-272eb84cf51e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.