PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study between two-level and three-level high-power low-voltage AC-DC converters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the analysis of the simulation test results for three variants of the power electronics used as interface between the power network and superconducting magnetic energy storage (SMES) with the following parameters: power of 250 kW, current of 500 A DC and voltage of 500 V DC. Three interface topologies were analyzed: two-level AC-DC and DC-DC converters; three-level systems and mixed systems combining a three-level active rectifier and a two-level DC-DC converter. The following criteria were considered: input and output current and voltage distortions, determined as THDi and THDu, power losses in power electronics components; cost of the semiconductor components for each topology and total cost of the interface. Results of the analysis showed that for high-power low-voltage and high-current power electronics systems, the most advantageous solution from a technical and economical perspective is a?two-level interface configuration in relation to both AC-DC and DC-DC converters.
Rocznik
Strony
583--592
Opis fizyczny
Bibliogr. 19 poz., wykr., rys., tab.
Twórcy
autor
  • Electrotechnical Institute, Warsaw, Poland
autor
  • Electrotechnical Institute, Warsaw, Poland
  • Electrotechnical Institute, Warsaw, Poland
Bibliografia
  • [1] L. Bowtell and T. Ahfock, “Comparison between Unipolar and bipolar single phase grid connected inverters for PV applications”, 2007 Australasian Universities Power Engineering Conference, IEEE Conferences.
  • [2] W.K. Ham, S.W. Hwang, and J.H. Kim, “Active and reactive power control model of superconducting magnetic energy storage (SMES) for improvement of power system stability”, J Elect Tech 3(1), 1?7 (2008).
  • [3] K.D. Papastergiou, P.W. Wheeler, and J.C. Clare, “Comparison of Losses in Multilevel Converters for Aerospace Applications”. 2008 IEEE Power Electronics Specialists Conference.
  • [4] M. Schweizer, I. Lizama, Th. Friedli, and J.W. Kolar, “Comparison of the Chip Area Usage of 2-level and 3-level Voltage Source Converter Topologies”, IECON 2010 – 36th Annual Conference on IEEE Industrial Electronics Society, pages 391?396.
  • [5] M.H. Ali, B. Wu, and R.A. Dougal, “An Overview of SMES Applications in Power and Energy Systems”, IEEE Trans. on Sustainable Energy, vol. 1, no. 1, pp. 38?47, April 2010.
  • [6] P.J. Grabovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “A bidirectional three-level dc-dc converter for the ultracapacitor applications”, IEEE Trans. Ind. Elect. 57(10), 3415?3430 (2010).
  • [7] T.B. Soeiro, M. Schweizer, J. Linner, P. Ranstad, and J.W. Kolar, “Comparison of 2- and 3-level Active Filters with Enhanced Bridge-Leg Loss Distribution”. 8th International Conference on Power Electronics – ECCA, Korea 2011.
  • [8] P. Mckenna, “Superconducting Magnets for Grid-Scale Storage. Technology Review”, Energy. March. 2011.
  • [9] G. Benysek, M.P. Kazmierkowski, J. Popczyk, and R. Strzelecki, „Power electronic systems as crucial part of Smart Grid infrastructure – a survey”, Bull. Pol. Ac.: Tech., vol. 59, no. 4, 2011, pp. 445?473.
  • [10] J.X. Jin and X.Y. Chen, “Study on the SMES application solutions for smart grid”, Physics Procedia, vol. 36, pp. 902–907, 2012.
  • [11] D. Sato and Jun-ichi Itoh, “Total Loss Comparison of Inverter circuit Topologies with Interior Permanent Magnet Synchronous Motor Drive System”, 2013 IEEE ECCE Asia Downunder.
  • [12] Md Arifujjaman, Md Shakhawat Hossain, and M.T. Iqbal, “Efficiency Comparison of 2-level and 3-level inverter based Power Conditioning System for grid connected SOFC application”, 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE).
  • [13] F. Chen, R. Burgos, and D. Boroyevich, “Efficiency Comparison of a Single-phase Gridinterface Bidirectional AC/DC Converter for DC Distribution Systems”, 2015 IEEE Energy Conversion Congress end Exposition.
  • [14] S.O. Amrouche, D. Rekioa, and T. Rekioa, “Overview of energy storage in renewable energy systems”, 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), pp.1?6, 2015.
  • [15] M. Bartosik, W. Kamrat, M.P. Kaźmierkowski, W. Lewandowski, M. Pawlik, T. Peryt, T. Skoczkowski, A. Strupczewski, and A. Szeląg, “Energy storage and hydrogen economy (Magazynowanie energii elektrycznej i gospodarka wodorowa)”, Przegląd Elektrotechniczny, 92 (12), 332?340, 2016 (in Polish).
  • [16] A. Domino, K. Zymmer, and M. Parchomiuk, “Selected converter topologies for interfacing energy storages with power grid”, Bull. Pol. Ac.: Tech., Vol. 65 No. 5, October 2017.
  • [17] K. Zymmer and A. Domino, “Wyznaczanie temperatury struktury przyrządu półprzewodnikowego w warunkach przeciążeń i zwarć”, Przegląd elektrotechniczny, Nr 10, 2013.
  • [18] P. Mazurek, K. Zymmer, J. Sikora, and A. Domino, „Wyznaczanie parametrów cieplnych przyrządów półprzewodnikowych dużej mocy metodą eksperymentalną”, Przegląd elektrotechniczny, Nr 05, 2016.
  • [19] Fuji Electric Innovating Energy Technology, „Fuji IGBT modules for solar inverter”, Bulletin of the Device Application Technology Dep. Jan 2015.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02b29097-52a4-4efe-a96a-89402a25c8a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.