PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Industrial collaborative robot Digital Twin integration and control using Robot Operating System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Standardized and universal solutions for industrial robot integration are increasingly urgent requirements for companies looking for machine interconnectivity, and flexibility in creating tailor made manufacturing systems. These solutions must be supported by modular and open-source components able to easily integrate new control methods and advanced Extended Reality (XR) interfaces. Robot Operating System (ROS) has proven to be a reliable standard for industrial robot integration. ROS compatibility software is provided by many producers and allows for the implementation of modular control units by unifying development practices along the same libraries and methods. Digital Twins (DT) of industrial equipment and processes offer a solid base to develop innovative digital tools relying on synchronization between physical and digital entities and to easily setup intuitive XR interfaces for teleoperation and programming. This work presents the integration of the OMRON TM5-9000 collaborative industrial robot into the IVAR laboratory DT system at Tallinn University of Technology. By using Unity3D game engine and developing a ROS package for the specific machine, the digital model of the collaborative robot is integrated into the existing twin. Synchronization with the real counterpart is provided by MQTT protocol while a robot user interface is developed in Unity and provides robot joints visualization and remote control.
Rocznik
Strony
57--67
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Estonia
  • Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Estonia
  • Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Estonia
  • Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Estonia
autor
  • Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Estonia
  • Electronic & Computer Engineering department, University of Limerick, Ireland
  • Department of Electronics and Computer Engineering., Technological University of the Shannon: Midlands Midwest, Ireland
  • Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Estonia
Bibliografia
  • [1] BASTIDAS-CRUZ A., HEIMANN O., HANINGER K., KRÜGER J., 2020, Information Requirements and Interfaces for the Programming of Robots in Flexible Manufacturing, Annals of Scientific Society for Assembly, Handling and Industrial Robotics, 183–192.
  • [2] SHERWANI F., ASAD M.M., IBRAHIM B.S.K.K., 2020, Collaborative Robots and Industrial Revolution 4.0 (IR 4.0), International Conference on Emerging Trends in Smart Technologies, ICETST 2020.
  • [3] ROMERO D., BERNUS P., NORAN O., STAHRE J., FAST-BERGLUND A., 2016, The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems, IFIP Advances in Information and Communication Technology, 677–686.
  • [4] QUIGLEY M., CONLEY K., GERKEY B., FAUST J., FOOTE T., LEIBS J., WHEELER R., NG A.Y., 2009, ROS: an Open-Source Robot Operating System, ICRA Workshop on Open Source Software, 3, 5.
  • [5] https://robots.ros.org/.
  • [6] GUTIERREZ C.S.V., JUAN L.U.S., UGARTE I.Z., GOENAGA I.M., KIRSCHGENS L.A., VILCHES V.M., 2018, Time Synchronization in Modular Collaborative Robots, rXiv:1809.07295.
  • [7] MOKARAM S., AITKEN J.M., MARTINEZ-HERNANDEZ U., EIMONTAITE I., CAMERON D., ROLPH J., GWILT I., MCAREE O., LAW J., 2017, A ROS-Integrated API for the KUKA LBR iiwa Collaborative Robot, IFAC-PapersOnLine, 50, 15859–64.
  • [8] KALLWEIT S., WALENTA R., GOTTSCHALK M., 2016, ROS Based Safety Concept for Collaborative Robots in Industrial Applications, Advances in Intelligent Systems and Computing, 27–35.
  • [9] KUTS V., RASSOLKIN A., PARTYSHEV A., JEGOROV S., RJABTSIKOV V., 2021, ROS Middle-Layer Integration to Unity 3D as an Interface Option for Propulsion Drive Simulations of Autonomous Vehicles IOP Conference Series: Materials Science and Engineering, 1140 012008.
  • [10] BAKLOUTI S., GALLOT G., VIAUD J., SUBRIN K., 2021, On the Improvement of Ros-Based Control for Teleoperated Yaskawa Robots, Applied Sciences (Switzerland), 11.
  • [11] KREITZ J., LEE M., SUBPARK H., OH P.Y., OH J.H., 2020, Implementing ROS Communications for Sensor Integration with the RB5 Collaborative Robot, 2020 10th Annual Computing and Communication Workshop and Conference, 378–383.
  • [12] SITA E., HORVATH C.M., THOMESSEN T., KORONDI P., PIPE A.G., 2018, ROS-Unity3D Based System for Monitoring of an Industrial Robotic Process, 2017 IEEE/SICE International Symposium on System Integration, 1047–1052.
  • [13] MADDIKUNTA P.K.R., PHAM Q-V., PRABADEVI B., DEEPA N., DEV K., GADEKALLU T.R, RUBY R., LIYANAGE M., 2021, Industry 5.0: A Survey on Enabling Technologies and Potential Applications, Journal of Industrial Information Integration, 100257.
  • [14] KUTS V., CHEREZOVA N., SARKANS M., OTTO T., 2020, Digital Twin: Industrial Robot Kinematic Model Integration to the Virtual Reality Environment, Journal of Machine Engineering, 20/2, 53–64.
  • [15] KUTS V., OTTO T., BONDARENKO Y., YU F., 2020, Digital Twin: Collaborative Virtual Reality Environment for Multi-Purpose Industrial Applications, ASME International Mechanical Engineering Congress and Exposition, Proceedings, IMECE2020-23390, V02BT02A010.
  • [16] BILBERG A., MALIK A.A., 2019, Digital Twin Driven Human–Robot Collaborative Assembly, CIRP Annals, 68/1, 499–502.
  • [17] PEREZ L., RODRIGUEZ-JIMENEZ S., RODRIGUEZ N., USAMENTIAGA R., GARCIA D.F., 2020, Digital Twin and Virtual Reality Based Methodology for Multi-Robot Manufacturing Cell Commissioning, Applied Sciences, 10, 3633.
  • [18] SIEGELE D., STEINER D., GIUSTI A., RIEDL M., MATT D.T., 2021, Optimizing Collaborative Robotic Workspaces in Industry by Applying Mixed Reality, International Conference on Augmented Reality, Virtual Reality and Computer Graphics, 544–559.
  • [19] MARVEL J.A., BAGCHI S., ZIMMERMAN M., AKSU M., ANTONISHEK B., LI X., WANG Y., MEAD R., FONG T., BEN AMOR H., 2021, Novel and Emerging Test Methods and Metrics for Effective HRI, ACM/IEEE International Conference on Human-Robot Interaction, 730–732.
  • [20] KOUSI N., GKOURNELOS C., AIVALIOTIS S., LOTSARIS K., BAVELOS A.C., BARIS P., MICHALOS G., MAKRIS S., 2021, Digital Twin for Designing and Reconfiguring Human–Robot Collaborative Assembly Lines, Applied Sciences (Switzerland), 11.
  • [21] https://www.tm-robot.com/en/techman-x-omron/.
  • [22] KUTS V., MODONI G.E., OTTO T., SACCO M., TÄHEMAA T., BONDARENKO Y., WANG R., 2019, Synchronizing Physical Factory and its Digital Twin Throughan iiot Middleware: A case study, Proceedings of the Estonian Academy of Sciences, 68, 364–370.
  • [23] https://moveit.ros.org/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02afabe4-b863-41a0-9a02-9f6b8367d011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.