PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting muscle fatigue during dynamic contractions using wavelet analysis of surface electromyography signal

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Muscle fatigue is defined as a reduction in the capability of muscle to exert force or power. Although surface electromyography (sEMG) signals during exercise have been used to assess muscle fatigue, analyzing the sEMG signal during dynamic contractions is difficult because of the many signal distorting factors such as electrode movements, and variations in muscle tissue conductivity. Besides the non-deterministic and non-stationary nature of sEMG in dynamic contractions, no fatigue indicator is available to predict the ability of a muscle to apply force based on the sEMG signal properties. In this study, we designed and manufactured a novel wearable sensor system with both sEMG electrodes and motion tracking sensors to monitor the dynamic muscle movements of human subjects. We detected the state of muscle fatigue using a new wavelet analysis method to predict the maximum isometric force the subject can apply during dynamic contraction. Our method of signal processing consists of four main steps. 1- Segmenting sEMG signals using motion tracking signals. 2- Determine the most suitable mother wavelet for discrete wavelet transformation (DWT) based on cross-correlation between wavelets and signals. 3- Deoinsing the sEMG using the DWT method. 4- Calculation of normalized energy in different decomposition levels to predict maximal voluntary isometric contraction force as an indicator of muscle fatigue. The monitoring system was tested on healthy adults doing biceps curl exercises, and the results of the wavelet decomposition method were compared to well-known muscle fatigue indices in the literature.
Twórcy
  • Mechanical Engineering Department, University of British Columbia, Vancouver, Canada
  • Daanaa Resolution Inc., Vancouver, Canada
  • School of Kinesiology, University of British Columbia, Vancouver, Canada
autor
  • Mechanical Engineering Department, University of British Columbia, Vancouver, Canada
autor
  • Mechanical Engineering Department, University of British Columbia, Vancouver, Canada
Bibliografia
  • [1] Arabadzhiev TI, Dimitrov VG, Dimitrova NA, Dimitrov GV. Interpretation of EMG integral or rms and estimates of neuromuscular efficiency can be misleading in fatiguing contraction. J Electromyog Kinesiol 2010;20(2):223-32.
  • [2] Candotti CT, Loss JF, Melo MDO, La Torre M, Pasini M, Dutra LA, et al. Comparing the lactate and EMG thresholds of recreational cyclists during incremental pedaling exercise. Can J Physiol Pharmacol 2008;86(5):272-8.
  • [3] González-Izal M, Malanda A, Gorostiaga E, Izquierdo M. Electromyographic models to assess muscle fatigue. J Electromyogr Kinesiol 2012;22(4):501-12.
  • [4] Gonzalez-Izal M, Cadore EL, Izquierdo M. Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue. Muscle Nerve 2014;49(3):389-97.
  • [5] Wu Q, Wei C, Cai Z, Ding L, Law R. An improved ensemble empirical mode decomposition and hilbert transform for fatigue evaluation of dynamic EMG signal. Optik 2015;126 (24):5903-8.
  • [6] Gündogdu U, Sayin A, Akan A, Arslan Y, Orhan E, Baslo M. Investigation of muscle fatigue using temporal and spectral moments. In: Proceedings of the 5th WSEAS International Conference on Signal Processing (SIP’06), Citeseer. p. 10-4.
  • [7] Yavuz E, Eyupoglu C. A cepstrum analysis-based classification method for hand movement surface EMG signals. Med Biol Eng Comput 2019;57(10):2179-201.
  • [8] Biagetti G, Crippa P, Curzi A, Orcioni S, Turchetti C. Analysis of the EMG signal during cyclic movements using multicomponent am–fm decomposition. IEEE J Biomed Health Informat 2014;19(5):1672-81.
  • [9] Krishnamani DB, Karthick P, Swaminathan R. Variational mode decomposition based differentiation of fatigue conditions in muscles using surface electromyography signals. IET Signal Proc 2021;14(10):745-53.
  • [10] Farina D, Merletti R, Nazzaro M, Caruso I. Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng Med Biol Mag 2001;20(6):62-71.
  • [11] Sacco IC, Gomes AA, Otuzi ME, Pripas D, Onodera AN. A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions. J Neurosci Methods 2009;180(1):133-7.
  • [12] Cechetto A, Parker P, Scott R. The effects of four time-varying factors on the mean frequency of a myoelectric signal. J Electromyogr Kinesiol 2001;11(5):347-54.
  • [13] Mesin L, Joubert M, Hanekom T, Merletti R, Farina D. A finite element model for describing the effect of muscle shortening on surface EMG. IEEE Trans Biomed Eng 2006;53(4):593-600.
  • [14] Farina D. Interpretation of the surface electromyogram in dynamic contractions. Exercise Sport Rev 2006;34(3):121-7.
  • [15] Kaur G, Arora AS, Jain V. Comparison of the techniques used for segmentation of EMG signals. In: Proceedings of the 11th WSEAS international conference on Mathematical and computational methods in science and engineering. p. 124-9.
  • [16] Baygin M, Barua PD, Dogan S, Tuncer T, Key S, Acharya UR, et al. A hand-modeled feature extraction-based learning network to detect grasps using sEMG signal. Sensors 2022;22 (5):2007.
  • [17] Tuncer T, Dogan S, Subasi A. Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition. Biomed Signal Process Control 2020;58:101872.
  • [18] Abbaspour S, Fallah A, Lindén M, Gholamhosseini H. A novel approach for removing ecg interferences from surface EMG signals using a combined anfis and wavelet. J Electromyogr Kinesiol 2016;26:52-9.
  • [19] Belkhou A, Achmamad A, Jbari A. Classification and diagnosis of myopathy EMG signals using the continuous wavelet transform. 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). IEEE; 2019. p. 1-4.
  • [20] Karlsson S, Yu J, Akay M. Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study. IEEE Trans Biomed Eng 2000;47(2):228-38.
  • [21] Kumar DK, Pah ND, Bradley A. Wavelet analysis of surface electromyography. IEEE Trans Neural Syst Rehabil Eng 2003;11(4):400-6.
  • [22] Wan B, Xu L, Ren Y, Wang L, Qiu S, Liu X, et al. Study on fatigue feature from forearm sEMG signal based on wavelet analysis. In: 2010 IEEE International Conference on Robotics and Biomimetics. IEEE; 2010. p. 1229-32.
  • [23] Mota-Carmona JR, Pérez-Escamirosa F, Minor-Martínez A, Rodríguez-Reyna RM. Muscle fatigue detection in upper limbs during the use of the computer mouse using discrete wavelet transform: A pilot study. Biomed Signal Process Control 2022;76:103711.
  • [24] Ngui WK, Leong MS, Hee LM, Abdelrhman AM. Wavelet analysis: mother wavelet selection methods. Applied mechanics and materials, vol. 393. Trans Tech Publ; 2013. p. 953-8.
  • [25] Day S. Important factors in surface EMG measurement. Bortec Biomedical Ltd Publishers; 2002. p. 1-7.
  • [26] Wang J, Tang L, Bronlund JE. Surface EMG signal amplification and filtering. Int J Comput Appl 2013;82(1).
  • [27] Stegeman D, Hermens H. Standards for surface electromyography: The european project surface EMG for non-invasive assessment of muscles (SENIAM). Enschede: Roessingh Res Develop 2007;10:8-12.
  • [28] Beck TW, Housh TJ, Johnson GO, Weir JP, Cramer JT, Coburn JW, et al. The effects of interelectrode distance on electromyographic amplitude and mean power frequency during isokinetic and isometric muscle actions of the biceps brachii. J Electromyogr Kinesiol 2005;15(5):482-95.
  • [29] Khaing AS, Naing ZM. Quantitative investigation of digital filters in electrocardiogram with simulated noises. Int J Informat Electron Eng 2011;1(3):210-6.
  • [30] Roetenberg D, Luinge HJ, Baten CT, Veltink PH. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans Neural Syst Rehabil Eng 2005;13(3):395-405.
  • [31] Luinge HJ. Inertial sensing of human movement. Twente University Press Enschede; 2002.
  • [32] IMU and GPS sensor fusion to determine orientation and position. https://www.mathworks.com/help/fusion/inertial-sensor-fusion.html.
  • [33] Fu S, Muralikrishnan B, Raja J. Engineering surface analysis with different wavelet bases. J Manuf Sci Eng 2003;125 (4):844-52.
  • [34] Stark H-G. Wavelets and signal processing: an application-based introduction. Springer Science & Business Media; 2005.
  • [35] Aggarwal R, Singh JK, Gupta VK, Rathore S, Tiwari M, Khare A. Noise reduction of speech signal using wavelet transform with modified universal threshold. Int J Comput Appl 2011;20 (5):14-9.
  • [36] Too J, Abdullah A, Saad NM, Ali NM, Musa H. A detail study of wavelet families for EMG pattern recognition. Int J Electr Comput Eng (IJECE) 2018;8(6):4221-9.
  • [37] Walker JS. A primer on wavelets and their scientific applications. CRC Press; 2008.
  • [38] Rafiee J, Rafiee M, Prause N, Schoen M. Wavelet basis functions in biomedical signal processing. Expert Syst Appl 2011;38(5):6190-201.
  • [39] Sundararajan D. Discrete wavelet transform: a signal processing approach. John Wiley & Sons; 2016.
  • [40] Senneff S, Lowery MM. Effects of extracellular potassium on calcium handling and force generation in a model of excitation-contraction coupling in skeletal muscle. J Theor Biol 2021;519:110656.
  • [41] Wang L, Wang Y, Ma A, Ma G, Ye Y, Li R, et al. A comparative study of EMG indices in muscle fatigue evaluation based on grey relational analysis during all-out cycling exercise. BioMed Res Int 2018;2018.
  • [42] Cifrek M, Medved V, Tonković S, Ostojić S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech 2009;24(4):327-40.
  • [43] Beck TW, Housh TJ, Johnson GO, Weir JP, Cramer JT, Coburn JW, et al. Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii. J Electromyogr Kinesiol 2005;15(2):190-9.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02ad3090-4922-4aed-bf5f-f4fb26d179d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.