PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and operational diagnostics of marine propellers made of polymer materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There has been a rapidly growing interest in the use of composite and polymer materials for the construction of marine propellers for over 20 years. The main advantages of these materials are a reduction in the weight of the propeller, increased efficiency due to the hydroelasticity effect, a reduction of the hydroacoustic signature, and a cost reduction for serial production. This paper presents an overview of diagnostic methods that can be applied at the design level and during the operation of marine propellers made of polymeric materials. Non-invasive contact and non-contact-based diagnostic techniques for evaluating the technical state of the propeller are reviewed, and the advantages and disadvantages of qualitative and quantitative methods are identified. Operational diagnostic procedures for propellers are areessential for the safety of vessels at sea. Finally, the structure of a diagnostic system is proposed. It combined diagnosis process with the genesis of damage and the prognosis of the technical condition, i.e. production and in-service diagnostics.
Słowa kluczowe
Rocznik
Tom
Strony
115--122
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Polish Naval Academy Mechanical-Electrical Faculty Śmidowicza 69 St. 81-127 Gdynia Poland
  • Polish Naval Academy Mechanical-Electrical Faculty Śmidowicza 69 St. 81-127 Gdynia Poland
  • University of Split Faculty of Marine Studies Ruđera Boškovića 37 St. 21000 Split Croatia
Bibliografia
  • 1. T. Searle, J. Chudley, D. Short, and C. Hodge, “The composite advantage,” in SNAME 7th Propeller and Shafting Symposium, PSS 1994. [Online]. Available: https://core. ac.uk/download/pdf/29818813.pdf. [Accessed: Aug. 10, 2022].
  • 2. Król P. “Hydrodynamic state of art review: Rotor - stator marine propulsor systems design” Polish Maritime Research, vol. 28, no. 1. 2021, doi: 10.2478/pomr-2021-0007.”.
  • 3. A. Grządziela, A. Załęska-Fornal, and M. Kluczyk, “The single degree of freedom simulation model of underwater explosion impact,” Archives of Acoustics, vol. 45, no. 2, pp. 341-348, 2020, doi: 10.24425/aoa.2020.133154.
  • 4. D. S. de Vasconcellos, F. Touchard, and L. Chocinski-Arnault, “Tension–tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: A multi-instrumented damage analysis,” International Journal of Fatigue, vol. 59, pp. 159-169, Feb. 2014, doi: 10.1016/j.ijfatigue.2013.08.029.
  • 5. V. Ryabov, B. Yartsev, and L. Parshina, “Heterogeneous dissipative composite structures,” AIP Conference Proceedings, vol. 1959, no. 1, p. 070031, May 2018, doi: 10.1063/1.5034706.
  • 6. J. Summerscales, “Design of marine structures in composite materials” By C. S. Smith, London: Elsevier Science Publishers, 1990. ISBN 1-85166-416-5. Composites Science and Technology, vol. 41, no. 1, pp. 99-100, Jan. 1991, doi: 10.1016/0266-3538(91)90055-T.
  • 7. D. Harsha Vardhan, A. Ramesh, and B. Chandra Mohan Reddy, “A review on materials used for marine propellers,” Materials Today: Proceedings, vol. 18, pp. 4482-4490, Jan. 2019, doi: 10.1016/j.matpr.2019.07.418.
  • 8. T. Yamatogi, H. Murayama, K. Uzawa, T. Mishima, and Y. Ishihara, “Study on composite material marine propellers,” Journal of the JIME, vol. 46, no. 3, pp. 330-340, 2011, doi: 10.5988/jime.46.330.
  • 9. L. M. Atkins, “The manufacture of marine propellers” Journal of the American Society for Naval Engineers, vol. 47, pp. 229-240, no. 2, 1935.
  • 10. T. Taketani, K. Kimura, S. Ando, and K. Yamamoto, “Study on performance of a ship propeller using a composite material,” In Third International Symposium on Marine Propulsors SMP’13, Launceston, Tasmania, Australia, May 2013, p. 6.
  • 11. T. A. Osswald i G. Menges, „Material Science of Polymers for Engineers”, w Material Science of Polymers for Engineers (Third Edition), T. A. Osswald i G. Menges, Red. Hanser, 2012, s. I–XIX. doi: 10.3139/9781569905241.fm.
  • 12. P. Kennedy and R. Zheng, Flow Analysis of Injection Molds, 2nd ed. München: Carl Hanser Verlag GmbH & Co. KG, 2013. doi: 10.3139/9781569905227.
  • 13. J. Rigelsford, Injection Molding Handbook, 3rd. ed., Assembly Automation, vol. 23, no. 2, Jan. 2003, doi: 10.1108/ aa.2003.03323bae.001.
  • 14. E. Bayraktar, S. D. Antolovich, and C. Bathias, “New developments in non-destructive controls of the composite materials and applications in manufacturing engineering, “Journal of Materials Processing Technology, vol. 206, no. 1, pp. 30-44, Sep. 2008, doi: 10.1016/j.jmatprotec.2007.12.001.
  • 15. W. Hufenbach, R. Böhm, M. Thieme, and T. Tyczynski, “Damage monitoring in pressure vessels and pipelines based on wireless sensor networks,” Procedia Engineering, vol. 10, pp. 340-345, Jan. 2011, doi: 10.1016/j.proeng.2011.04.058.
  • 16. E. V. Yakovlev, K. I. Zaytsev, I. N. Dolganova, and S. O. Yurchenko, “Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy,” IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 5, pp. 810- 816, 2015, doi: 10.1109/TTHZ.2015.2460671.
  • 17. Failure Analysis and Fractography of Polymer Composites, 1st ed. [Online]. Available: https://www.elsevier.com/books/ failure-analysis-and-fractography-of-polymer-composites/ greenhalgh/978-1-84569-217-9. [Accessed: Aug. 10, 2022]
  • 18. Failure Analysis and Fractography of Polymer Composites, 1st ed. [Online]. Available: https://www.elsevier.com/books/ failure-analysis-and-fractography-of-polymer-composites/ greenhalgh/978-1-84569-217-9. [Accessed: Aug. 10, 2022].
  • 19. G. H. Michler and H.-H. K.-B. von Schmeling, “The physics and micro-mechanics of nano-voids and nano-particles in polymer combinations,” Polymer, vol. 54, no. 13, pp. 3131- 3144, 2013.
  • 20. A. Katunin, K. Dragan, and M. Dziendzikowski, “Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques,” Composite Structures, vol. 127, pp. 1-9, 2015, doi: 10.1016/j. compstruct.2015.02.080.
  • 21. T. M. Loganathan, M. T. H. Sultan, S. M. Muhammad Amir, J. Jamil, M. R. Yusof, and A. U. Md Shah, “Infrared thermographic and ultrasonic inspection of randomly-oriented short-natural fiber-reinforced polymeric composites,” Frontiers in Materials, vol. 7, 2021.
  • 22. S. Robinson, Good Practice Guide for Underwater Noise Measurement, NPL Good Practice Guide No. 133, ISSN: 1368-6550, 2014, p. 97.
  • 23. M. A. Ainslie, Standard for Measurement and Monitoring of Underwater Noise, Part I. Physical Quantities and Their Units. Report no TNO-DV, 2011.
  • 24. K. Buszman, „Analysing the Impact on Underwater Noise of Changes to the Parameters of a Ship’s Machinery”, Polish Maritime Research, t. 27, nr 3, s. 176–181, wrz. 2020, doi: 10.2478/pomr-2020-0059.
  • 25. E. Kozaczka and G. Grelowska, “Propagation of ship-generated noise in shallow sea,” Polish Maritime Research, vol. 25, no. 2, pp. 37-46, Jun. 2018, doi: 10.2478/ pomr-2018-0052.
  • 26. „B. Lou and H. Cui, “Fluid-structure interaction vibration experiments and numerical verification of a real marine propeller,” Polish Marit. Res., vol. 28, no. 3, 2021, doi: 10.2478/pomr-2021-0034.”.
  • 27. I. Gloza and K. Buszman, “Underwater acoustic investigation using sound intensity method,” in Forum Acusticum 2014, 7–12 September, Krakow, 2014. p. 7.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02ab0679-c986-4a43-8823-9d846f41ed8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.