PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Justification of the most rational method for the nanostructures synthesis on the semiconductors surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to justification the most rational method for the nanostructures synthesis on the semiconductors surface, which is capable of providing high quality synthesized nanostructures at low cost and ease of the process. Design/methodology/approach: The choice of the optimal method of synthesis was carried out using the hierarchy analysis method, which is implemented by decomposing the problem into more simple parts and further processing judgments at each hierarchical level using pair comparisons. Findings: The article describes the main methods of synthesis of nanostructures, presents their advantages and disadvantages. The methods were evaluated by such criteria as: environmental friendliness, efficiency, stages number of the technological process, complexity, resources expenditure and time and effectiveness. Using the hierarchy analysis method, has been established that electrochemical etching is the most important alternative, and when choosing a nanostructures synthesis method on the semiconductors surface, this method should be preferred. Such studies are necessary for industrial serial production of nanostructures and allow reducing expenses at the realization of the problem of synthesis of qualitative samples. Research limitations/implications: In this research, the hierarchy analysis method was used only to select a rational method for synthesizing nanostructures on the semiconductors surface. However, this research needs to be developed with respect to establishing a correlation between the synthesis conditions and the nanostructures acquired properties. Practical implications: First, was been established that the optimal method for the nanostructures synthesis on the semiconductors surface is electrochemical etching, and not lithographic or chemical method. This allowed the theoretical and empirical point of view to justify the choice of the nanostructures synthesis method in the industrial production conditions. Secondly, the presented method can be applied to the synthesis method choice of other nanostructures types, which is necessary in conditions of resources exhaustion and high raw materials cost. Originality/value: In the article, for the first time, the choice of the nanostructures synthesis method on the semiconductors surface is presented using of paired comparisons of criteria and available alternatives. The article will be useful to engineers involved in the nanostructures synthesis, researchers and scientists, as well as students studying in the field of "nanotechnology".
Rocznik
Strony
19--28
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
  • Plasma Physics Research Center, Faculty of Sciences, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Simon Bulivar Blvd., Iran
autor
  • Natural Resources and Environmental Engineering, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Simon Bulivar Blvd., Iran
Bibliografia
  • [1] W. Matysiak, T. Tański, W. Smok, Electrospinning of PAN and composite PAN-GO nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 18-26, DOI: 10.5604/01.3001.0012.9653.
  • [2] H. Föll, J. Carstensen, S. Frey, Porous and nanoporous semiconductors and emerging applications, Journal of Nanomaterials (2006) 1-10, DOI: 10.1155/JNM/2006/91635.
  • [3] M. Wilk, L. Klimek, Oxide layers on titanium obtained by anodizing in orthophosphoric acid, Archives of Materials Science and Engineering 94/1 (2018) 11-17, DOI: 10.5604/01.3001.0012.7803.
  • [4] M. Szindler, M.M Szindler, L.A. Dobrzański, T. Jung, NiO nanoparticles prepared by the sol-gel method for a dye sensitized solar cell applications, Archives of Materials Science and Engineering 92/1 (2018) 15-21; DOI: 10.5604/01.3001.0012.5507.
  • [5] V. Schmidt, Silicon nanowires: a review on aspects of their growth and their electrical properties, Advanced Materials 21/25 (2009) 2681-2702, DOI: 10.1002/adma.200803754.
  • [6] R. Dastjerdi, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloids and Surfaces B: Biointerfaces 79/1 (2010) 5-18, DOI: 10.1016/j.colsurfb.2010.03.029.
  • [7] W. Lu, C.M. Lieber, Nanoelectronics from the bottom up, Nature Materials 6/11 (2007) 841-850, DOI: 10.1142/9789814287005_0014.
  • [8] M. Li, Bottom-up assembly of large-area nanowire resonator arrays, Nature Nanotechnology 3/2 (2008) 88-92, DOI: https://doi.org/10.1038/nnano.2008.26.
  • [9] S.T. Walsh, Roadmapping a disruptive technology: a case study: the emerging microsystems and top-down nanosystems industry, Technological Forecasting and Social Change 7/1 (2004) 161-185, DOI: 10.1016/j.techfore.2003.10.003.
  • [10] I. Park, Z. Li, A.P. Pisano, R.S. Williams, Top-down fabricated silicon nanowire sensors for real-time chemical detection, Nanotechnology 21/1 (2009) 015501.
  • [11] M. Okuda, T. Schwarze, J.-C. Eloi, S.E. Ward Jones, P.J. Heard, A. Sarua, E. Ahmad, V.V. Kruglyak, D. Grundler, W. Schwarzacher, Top-down design of magnonic crystals from bottom-up magnetic nanoparticles through protein arrays, Nanotechnology 28/15 (2017) 155301.
  • [12] I. Tiginyanu, E. Monaico, V. Sergentu, A. Tiron, V. Ursaki, Metallized porous GaP templates for electronic and photonic applications, ECS Journal of Solid State Science and Technology 4/3 (2015) P57-P62, DOI: 10.1149/2.0011503jss.
  • [13] V. Rajendran, Development of Nanomaterials from Natural Resources for Various Industrial Applications, Advanced Materials Research 67 (2009) 71-76, DOI: 10.4028/www.scientific.net/AMR.67.71.
  • [14] O. Mangla, M.P. Srivastava, GaN nanostructures by hot dense and extremely non-equilibrium plasma and their characterizations, Journal of Materials Science 48/1 (2013) 304-310, DOI: https://doi.org/10.1007/s10853-012-6746-y.
  • [15] A. Srivastava, R. Nahar, C. Sarkar, W. Singh, Y. Malhotra, Study of hafnium oxide deposited using Dense Plasma Focus machine for film structure and electrical properties as a MOS device, Micro-electronics Reliability 51/4 (2011) 751-755, DOI: 10.1016/j.microre1.2010.12.002.
  • [16] P. Lodahl, S. Mahmoodian, S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures, Reviews of Modern Physics 87/2 (2015) 347-400, DOI: 10.1103/RevModPhys.87.347.
  • [17] L. Mei, Y. Chen, J. Ma, Gas sensing of SnO2 nanocrystals revisited: developing ultra-sensitive sensors for detecting the H2S leakage of biogas, Scientific Reports 4 (2014) 6028.
  • [18] Y.A. Sychikova, V.V. Kidalov, G.A. Sukach, Dependence of the threshold voltage in indium-phosphide pore formation on the electrolyte composition, Journal of Surface Investigation 7 (2013) 626-630, DOI: 10.1134/S1027451013030130.
  • [19] Y.A. Suchikova, V.V. Kidalov, A.A. Konovalenko, G.A. Sukach, Blue shift of photoluminescence spectrum of porous InP, ECS Transactions 25/24 (2010) 59-64, DOI: 10.1149/1.3316113.
  • [20] R. Das, Z. Shahnavaz, M.E. Ali, M.M. Islam, S.B.A. Hamid, Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis?, Nanoscale Research Letters 11 (2016) 1-23, Article number: 510, DOI: 10.1186/s11671-016-1730-0.
  • [21] R. Wuthrich, J.D. Abou Ziki, Chapter 2 - Historical Overview of Electrochemical Discharges, in: Micromachining Using Elechtrochemical Discharge Phenomenon, Elsevier, 2015, 13-33, DOI: 10.1016/B978-0-323-24142-7.00002-0.
  • [22] A. Benor, New insights into the oxidation rate and formation of porous structures on silicon, Materials Science and Engineering: B 228 (2018) 183-189, DOI: 10.1016/j.mseb.2017.11.015.
  • [23] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, O. Kondratenko, O. Hurenko, S. Onishchenko, Research into regularities of pore formation on the surface of semiconductors, Eastern-European Journal of Enterprise Technologies 3/5(87) (2017) 37-44, DOI: 10.15587/1729-4061.2017.104039.
  • [24] W. Matysiak, P. Jarka, T. Tański, Preparation and investigations of electrical and optical properties of thin composite layers PAN/SiO2, TiO2 and Bi2O3, Archives of Materials Science and Engineering 91/1 (2018) 15-22, DOI: 10.5604/01.3001.0012.1381.
  • [25] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, T. Nestorenko, S. Onyschenko, Formation of filamentary structures of oxide on the surface of monocrystalline gallium arsenide, Journal of Nano-and Electronic Physics 9/6 (2017) 06016-06020.
  • [26] M. Król, J. Mazurkiewicz, S. Żołnierczyk, Optimization and analysis of porosity and roughness in selective laser melting 316L parts, Archives of Materials Science and Engineering 90/1 (2018) 5-15, DOI: 10.5604/01.3001.0012.0607.
  • [27] Y.O. Suchikova, Sulfide Passivation of Indium Phosphide Porous Surfaces, Journal of Nano- and Electronic Physics 9/1 (2017) 1006-1-1006-6.
  • [28] E. David, C. Sandru, A. Armeanu, Zeolitization characteristics of fly ash and its use to manufacture porous materials, Archives of Materials Science and Engineering 90/2 (2018) 56-67, DOI: 10.5604/01.3001.0012.0663.
  • [29] Y.A. Suchikova, V.V. Kidalov, G.A. Sukach, Influence of type anion of electrolit on morphology porous InP obtained by electrochemical etching, Journal of Nano- and Electronic Physics 1/4 (2009) 111-118.
  • [30] X. Qi, X. Fang, D. Zhu, Investigation of electrochemical micromachining of tungsten microtools, International Journal of Refractory Metals and Hard Materials 71 (2018) 307-314, DOI: 10.1016/j.ijrmhm.2017.11.045.
  • [31] M. Khalil, Advanced nanomaterials in oil and gas industry: design, application and challenges, Applied Energy 191 (2017) 287-310, DOI: 10.1016/j.apenergy.2017.01.074.
  • [32] A. Udupa, X. Yu, L. Edwards, L.L. Goddard, Selective area formation of arsenic oxide-rich octahedral microcrystals during photochemical etching of n-type GaAs, Optical Materials Express 8/2 (2018) 289-294, DOI: 10.1364/OME.8.000289.
  • [33] V.P. Makhnij, I.I. German, V.M. Sklarchuk, Optical properties of microporous n-GaAs, Telecommunications and Radio Engineering 74/16 (2015) 1467-1472, DOI: 10.1615/TelecomRadEng.v74.i16.60.
  • [34] X. Chai, Z. Weng, L. Xu, Z. Wang, Tunable electrochemical oscillation and regular 3D nanopore arrays of InP, Journal of The Electrochemical Society 162/9 (2015) E129-E133, DOI: 10.1149/2.0341509jes.
  • [35] A. Ziębowicz, A. Woźniak, B. Ziębowicz, M. Adamiak, P. Boryło, Microstructure and properties of CoCr alloys used in prosthetics procedure, Archives of Materials Science and Engineering 89/1 (2018) 20-26, DOI: 10.5604/01.3001.0011.5726.
  • [36] A. Merda, M. Sroka, K. Klimaszewska, G. Golański, Microstructure and mechanical properties of the Sanicro 25 steel after ageing, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 5-11, DOI: 10.5604/01.3001.0012.9651.
  • [37] A. Kania, K. Cesarz-Andraczke, J. Odrobiński, Application of FMEA method for an analysis of selected production process, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 34-40, DOI: 10.5604/01.3001.0012.9655.
  • [38] P. Snopński, Microstructure and strengthening model of A1-3%Mg alloy in a heat treated state subjected to ECAP process, Journal of Achievements in Materials and Manufacturing Engineering 90/1 (2018) 5-10, DOI: 10.5604/01.3001.0012.7970.
  • [39] H.E. Hussein, H. Amari, J.V. Macpherson, Electrochemical Synthesis of Nanoporous Platinum Nanoparticles Using Laser Pulse Heating: Application to Methanol Oxidation, ACS Catalysis 7/10 (2017) 7388-7398, DOI: 10.1021/acscata1.7b02701.
  • [40] V.N. Bessolov, M.V. Lebedev, Chalcogenide passivation of III-V semiconductor surfaces, Semiconductors 32/11 (1998) 1141-1156, DOI: https://doi.org/10.1134/1.1187580.
  • [41] T. Trindade, P. O'Brien, N.L. Pickett, Nanocrystalline semiconductors: synthesis, properties, and perspectives, Chemistry of Materials 13/11 (2001) 3843-3858, DOI: https://doi.org/10.1021/cm000843p.
  • [42] S.P. Vikhrov, N.V. Bodyagin, T.G. Larina, S.M. Mursalov, Growth processes of noncrystalline semiconductors from positions of the self-organizing theory, Semiconductors 39/8 (2005) 953-959.
  • [43] T.L. Saaty, Decision making with the analytic hierarchy process, International Journal of Services Sciences 1/1 (2008) 83-98.
  • [44] T.L. Saaty, How to make a decision: the analytic hierarchy process, European Journal of Operational Research 48/1 (1990) 9-26.
  • [45] T.L. Saaty The analytic network process, in: T.L. Saaty, L.G. Vargas (Eds.), Decision making with the analytic network process, Springer, Boston, MA, 2006, 1-26.
  • [46] I. Bogdanov, Y. Suchikova, S. Vambol, V. Vambol, H. Lopatina, N. Tsybuliak, Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide, Eastern-European Journal of Enterprise Technologies 6/5-90 (2017) 22-31, DOI: 10.15587/1729-4061.2017.118725.
  • [47] E. Monaico, G. Colibaba, D. Nedeoglo, K. Nielsch, Porosification of III-V and II-VI semiconductor compounds, Journal of Nanoelectronics and Optoelectronics 9/2 (2014) 307-311, DOI: https://doi.org/ 10.1166/jno.2014.1581.
  • [48] H. Föll, J. Carstensen, S. Frey, Porous and nanoporous semiconductors and emerging applications, Journal of Nanomaterials (2006) 1-10.
  • [49] E. Monaico, I. Tiginyanu, 0. Volciuc, T. Mehrtens, A. Rosenauer, J. Gutowski, K. Nielsch, Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates, Electrochemistry Communications 47 (2014) 29-32, DOI: https://doi.org/10.1016/j.elecom.2014.07.015.
  • [50] D. Nmadu, A.A. Parshuto, Influence of the anodizing temperature on the mechanical properties of highly porous anodic alumina obtained using high-voltage electrochemical oxidation, High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes 21/1 (2017) 81-90, DOI: 10.1615/H ighTempMatProc.2017021404.
  • [51] I. Tiginyanu, E. Monaico, V. Sergentu, A. Tiron, V. Ursaki, Metallized porous GaP templates for electronic and photonic applications, ECS Journal of Solid State Science and Technology 4/3 (2015) P57-P62, DOI: 10.1149/2.0011503jss.
  • [52] A.L. Efros, D.J. Nesbitt, Origin and control of blinking in quantum dots, Nature Nanotechnology 11 (2016) 661-671.
  • [53] M.C. Weidman, M.E. Beck, R.S. Hoffman, F. Prins, W.A. Tisdale, Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control, ACS Nano 8 (2014) 6363-6371, DOI: 10.1021/1m5018654.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02a812e0-ef88-4f36-8d17-826e82c9d6ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.