PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Soil Pollution Levels in Al-Qadisiyah Governorate, Iraq Using Contamination Index and GIS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The precise determination of trace element concentrations in the soil of the Al-Qadisiyah Governorate is part of the Iraqi sedimentary plain is required to eliminate high levels of harmful elements in polluted soils. The soil samples were collected from 28 representative profiles in Al-Shamiyah city. The soil profiles were defined using virtual characterization. In this study, I-geo was used to analyze soil pollution. The goals and destinations of the I-geo readings Contamination of Cd, Ni, Pb, and Zn in various soil strata. I-geo (Cd) generally range from 0.58 to 4.71, I-geo (Ni) range from 0.09 to 4.07, I-geo (Pb) ranged range from 0.07 to 2.79, and I-geo (Zn) ranges from zero to 2.79, depicting the local differences in I-geo for pollutants in the research area. Suggesting that the research area had been heavily polluted from Cd in the varied layers of the soils. On the maps pertaining to Zn and Pb, the majority of the research area was primarily covered in the orange and blue hues, suggesting that a significant portion of the research area was likely to be severely polluted from Cd and Ni. Moreover, the land cover layouts of Ni in layers of the soils revealed concentrations rising towards to the western sections, which could be attributed to proximity to a major drain. The results display that its I-geo value of four trace metals generally range from non-pollute to significantly heavily polluted. The I-geo data show significant differences in levels of the Ni, Cd, Zn, and Pb in different soils strata. Including these findings, the soil in Al-Shamiya, Al-Qadisiyah Governorate contains high levels of Cd, Ni, Pb, and Zn. Industries of fossil fuel combustion, as well as other man-made wastes include agricultural nutrients, soil conditioners, and sludge, particularly, ammonium phosphate pollution in soils. The pollutant load index (PLI) reveals a baseline level of contamination in 28 locations, as well as a decline in soil quality in four others. Finally, assessing the danger of contamination for trace metals utilizing the I-geo and PLI by using the GIS method and multimodal models is a helpful and relevant strategy.
Rocznik
Strony
206--213
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Civil Engineering Department, College of Engineering, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
  • Department of Civil Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
Bibliografia
  • 1. Aguilera A., Bautista F., Gutiérrez-Ruiz M., Ceniceros-Gómez A.E., Cejudo R., Goguitchaichvili A. 2021. Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment. Environ. Monit. Assess., 193. https://doi.org/10.1007/s10661-021-08993-4
  • 2. Al-Dabbas M.A., Abdullah M.A. 2020. Assessment of soil pollution in the Ishaqi project area- Salah aldean Governorate, Iraq. Iraqi J. Sci., 61, 382–388. https://doi.org/10.24996/ijs.2020.61.2.16
  • 3. Al-Juboury A.I. 2009. Natural pollution by some heavy metals in the Tigris River, Northern Iraq. Int. J. Environ. Res., 3, 189–198. https://doi.org/10.22059/ijer.2009.47
  • 4. Awasthi M.K., Liao R., Ali A., Mahar A., Guo D., Li R., Xining S., Awasthi M.K., Wang Q., Zhang Z. 2017. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf., 139, 254–262. https://doi.org/10.1016/j.ecoenv.2017.01.044
  • 5. Bahram M., Hildebrand F., Forslund S.K., Anderson J.L., Soudzilovskaia N.A., Bodegom P.M., Bengtsson-Palme J., Anslan S., Coelho L.P., Harend H., Huerta-Cepas J., Medema M.H., Maltz M.R., Mundra S., Olsson P.A., Pent M., Põlme S., Sunagawa S., Ryberg M., Tedersoo L., Bork P. 2018. Structure and function of the global topsoil microbiome. Nature, 560, 233–237. https://doi.org/10.1038/s41586-018-0386-6
  • 6. Cui Y., Fang L., Guo X., Wang X., Zhang Y., Li P., Zhang X. 2018. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol. Biochem. 116, 11–21. https://doi.org/10.1016/j.soilbio.2017.09.025
  • 7. Cui Y., Wang X., Wang X., Zhang X., Fang L. 2021. Evaluation methods of heavy metal pollution in soils based on enzyme activities: A review. Soil Ecol. Lett. https://doi.org/10.1007/s42832-021-0096-0
  • 8. Duan C., Fang L., Yang C., Chen W., Cui Y., Li S. 2018. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol. Environ. Saf., 156, 106–115. https://doi.org/10.1016/j.ecoenv.2018.03.015
  • 9. Fang L., Liu Y., Tian H., Chen H., Wang Y., Huang M. 2017. Proper land use for heavy metal-polluted soil based on enzyme activity analysis around a Pb-Zn mine in Feng County, China. Environ. Sci. Pollut. Res., 24, 28152–28164. https://doi.org/10.1007/s11356-017-0308-4
  • 10. Hagmann D.F., Goodey N.M., Mathieu C., Evans J., Aronson M.F.J., Gallagher F., Krumins J.A. 2015. Effect of metal contamination on microbial enzymatic activity in soil. Soil Biol. Biochem. 91, 291–297. https://doi.org/10.1016/j.soilbio.2015.09.012
  • 11. Hossain Bhuiyan M.A., Chandra Karmaker S., Bodrud-Doza M., Rakib M.A., Saha B.B. 2021. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM, PMF and GIS methods. Chemosphere, 263. https://doi.org/10.1016/j.chemosphere.2020.128339
  • 12. Jiang R., Wang M., Chen W., Li X., Balseiro-Romero M., Baveye P.C. 2019. Ecological risk of combined pollution on soil ecosystem functions: Insight from the functional sensitivity and stability. Environ. Pollut., 255. https://doi.org/10.1016/j.envpol.2019.113184
  • 13. Ju W., Liu L., Fang L., Cui Y., Duan C., Wu H. 2019. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol. Environ. Saf., 167, 218–226. https://doi.org/10.1016/j.ecoenv.2018.10.016
  • 14. Liang J., Ding J., Wang J., Wang F. 2019. Quantitative estimation and mapping of soil salinity in the Ebinur Lake wetland based on VIS-NIR reflectance and Landsat 8 OLI data. Acta Pedol. Sin., 56. https://doi.org/10.11766/trxb201805070182
  • 15. Mandour A., El-Sayed M.K., El-Gamal A.A., Khadr A.M., Elshazly A. 2021. Temporal distribution of trace metals pollution load index in the Nile Delta coastal surface sediments. Mar. Pollut. Bull., 167. https://doi.org/10.1016/j.marpolbul.2021.112290
  • 16. Moorhead D.L., Sinsabaugh R.L., Hill B.H., Weintraub M.N. 2016. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem., 93, 1–7. https://doi.org/10.1016/j.soilbio.2015.10.019
  • 17. Radhi A.B., Shartooh S.M., Al-Heety E.A. 2021. Heavy metal pollution and sources in dust from primary schools and kindergartens in Ramadi City, Iraq. Iraqi J. Sci. 62, 1816–1828. https://doi.org/10.24996/ijs.2021.62.6.7
  • 18. Ranjani M., Veerasingam S., Venkatachalapathy R., Mugilarasan M., Bagaev A., Mukhanov V., Vethamony P. 2021. Assessment of potential ecological risk of microplastics in the coastal sediments of India: A meta-analysis. Mar. Pollut. Bull., 163. https://doi.org/10.1016/j.marpolbul.2021.111969
  • 19. Schloter M., Nannipieri P., Sørensen S.J., van Elsas J.D. 2018. Microbial indicators for soil quality. Biol. Fertil. Soils, 54. https://doi.org/10.1007/s00374-017-1248-3
  • 20. Sinsabaugh R.L., Moorhead D.L., Xu X., Litvak M.E. 2017. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol., 214, 1518–1526. https://doi.org/10.1111/nph.14485
  • 21. Tapia-Torres Y., Elser J.J., Souza V., García-Oliva F. 2015. Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil. Soil Biol. Biochem., 87, 34–42. https://doi.org/10.1016/j.soilbio.2015.04.007
  • 22. Usman Q.A., Muhammad S., Ali W., Yousaf S., Jadoon I.A.K. 2021. Spatial distribution and provenance of heavy metal contamination in the sediments of the Indus River and its tributaries, North Pakistan: Evaluation of pollution and potential risks. Environ. Technol. Innov. 21. https://doi.org/10.1016/j.eti.2020.101184
  • 23. Wahsha M., Nadimi-Goki M., Fornasier F., Al-Jawasreh R., Hussein E.I., Bini C. 2017. Microbial enzymes as an early warning management tool for monitoring mining site soils. Catena, 148, 40–45. https://doi.org/10.1016/j.catena.2016.02.021
  • 24. Wang M., Faber J.H., Chen W. 2017. Application of stress index in evaluating toxicological response of soil microbial community to contaminants in soils. Ecol. Indic., 75, 118–125. https://doi.org/10.1016/j.ecolind.2016.12.002
  • 25. Wang Y., Wang R., Fan L., Chen T., Bai Y., Yu Q., Liu Y. 2017. Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China. Chemosphere, 174, 613–627. https://doi.org/10.1016/j.chemosphere.2017.01.055
  • 26. Wang Z., Tian H., Tan X., Wang F., Jia H., Megharaj M., He W. 2019. Long-term As contamination alters soil enzyme functional stability in response to additional heat disturbance. Chemosphere, 229, 471–480. https://doi.org/10.1016/j.chemosphere.2019.05.055
  • 27. Wood J.L., Tang C., Franks A.E. 2016. Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2016.08.021
  • 28. Xian Y., Wang M., Chen W. 2015. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere, 139, 604–608. https://doi.org/10.1016/j.chemosphere.2014.12.060
  • 29. Xu Y., Seshadri B., Sarkar B., Wang H., Rumpel C., Sparks D., Farrell M., Hall T., Yang X., Bolan N. 2018. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Sci. Total Environ., 621, 148–159. https://doi.org/10.1016/j.scitotenv.2017.11.214
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02a4f0eb-f76e-49de-a6ac-b11e4b551747
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.