Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Nanosilica role in concrete containing iron oxides aggregates and boron carbide as a shield against gamma rays
Języki publikacji
Abstrakty
W artykule opisano wyniki badań dwóch betonów ciężkich, pierwszy zawierający kruszywo hematytowe i drugi magnetytowe. Węglik boru wprowadzono jako zamiennik cementu w ilościach 2,5; 5 i 10% masowych. Następnie w tych mieszankach ilość cementu zmniejszono o 5% i zastąpiono nanokrzemionką. Zbadano także właściwości betonu: wytrzymałość na ściskanie, szybkość przejścia fali ultradźwiękowej i gęstość, a także napromieniowano próbki kobaltem 60, w celu określenia współczynnika tłumienia liniowego. Zastosowanie kruszyw zawierających tlenek żelaza, a zwłaszcza magnetyt, było korzystne dla wszystkich wymienionych właściwości, natomiast odwrotnie było w przypadku dodania do mieszanki węglika boru. Dodatek nanokrzemionki skompensował spadek wytrzymałości betonu na ściskanie spowodowany dodatkiem węglika boru, ale zmniejszył współczynnik tłumienia liniowego o około 4%. Jednak właściwości mieszanek zawierających węglik boru i nanokrzemionkę były zawsze lepsze niż w przypadku betonów zwykłych. W celu określenia współczynnika tłumienia liniowego przeprowadzono symulacje Monte Carlo, których wyniki okazały się zgodne z wynikami uzyskanymi w trakcie badań doświadczalnych.
Two families of heavy concrete were investigated in this project, the first containing hematite and the second magnetite aggregates. Boron carbide also replaced cement in mass of 2.5, 5 and 10%. Once again, in these compounds the content of cement was reduced by 5% and replaced by nanosilica. Such parameters as compressive strength, ultrasonic pulse velocity and density were investigated, and the specimens were irradiated with cobalt 60, to quantify the linear attenuation coefficient. Using iron ore aggregate, especially magnetite, was advantageous for all the above-mentioned parameters, while the opposite was true, when boron carbide was added to the mix. The addition of nanosilica compensated the decrease in compressive strength of concrete due to the presence of boron carbide, but reduced the linear attenuation coefficient by about 4%. However, the properties of the mixes containing boron carbide and nanosilica, were always better than those of conventional concretes. To quantify the linear attenuation coefficient, Monte Carlo simulations were performed, and their results turned out to be in good agreement with those obtained by the experimental measurements.
Wydawca
Czasopismo
Rocznik
Tom
Strony
218--232
Opis fizyczny
Bibliogr. 39 poz., il., tab.
Twórcy
autor
- Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
autor
- Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
autor
- Department of Civil Engineering, Arak University, Arak, Iran
autor
- Department of Physics, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Bibliografia
- 1. P. Sikora, M.A. Elrahman, E. Horszczaruk, P. Brzozowski, D. Stephan, Incorporation of magnetite powder as a cement additive for improving thermal resistance and gamma-ray shielding properties of cement-based composites. Constr. Build. Mater. 204,113-121 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.161
- 2. A. El-Sawy, Development of Nuclear Power Reactor Shielding Using Two Different Types of Heavy Concrete. Arab. J. Nucl. Sci. App. 50(3), 151-158 (2017).
- 3. B. Oto, A. Gür, E. Kavaz, T. Çakır, N. Yaltay, Determination of gamma and fast neutron shielding parameters of magnetite concretes. Prog. Nucl. Energy 92, 71-80(2016). https://doi.org/10.1016/j.pnucene.2016.06.011
- 4. B. Oto, A. Gür, Gamma-ray shielding of concretes including magnetite in different rate. Int. J. Physic. Sci. 8(8), 310-314(2013).https://doi.org/10.5897/IJPS2013.3854
- 5. O. Gencel, A. Bozkurt, E. Kam, T. Korkut, Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions. Ann. Nucl. Energy 38, 2719-2723(2011). https://doi.org/10.1016/j.anucene.2011.08.010
- 6. O. Gencel, W. Brostow, C. Ozel, M. Filiz, Concretes containing hematite for use as shielding barriers. Mater. Sci.16(3), 249-256(2010).
- 7. K. Saidani, L. Ajam, M.B. Ouezdou, Barite powder as sand substitution in concrete: Effect on some mechanical properties. Constr. Build. Mater. 95, 287-295(2015). https://doi.org/10.1016/j.conbuildmat.2015.07.140
- 8. S. Shirmardi, M. Shamsaei, M. Naserpour, Comparison of photon attenuation coefficients of various barite concretes and lead by MCNP code, XCOM and experimental data. Ann. Nucl. Energy 55, 288-291(2013). https://doi: 10.1016/j.anucene.2013.01.002
- 9. I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, C. Basyigit, X Photon attenuation coefficients of concrete includes barite in different rate. Ann. Nucl. Energy 37(7), 910-914 (2013). https://doi.org/10.1016/j.anucene. 2010.04.001
- 10. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Gammaray shielding properties of concrete including barite at different energies. Prog.Nucl. Energy 52, 620-623(2010). https://doi.org/10.1016/j.pnucene.2010.04.006
- 11. V.A. Kumar, P.A. Kumar, V. Aravinth, L. J. Johnson, Gamma Radiation Absorption Characteristics of Concrete with Boron Carbide and Zeolite. Int. J. Modern Trends Sci. Tech.3(4), 89-92(2017).
- 12. I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, C. Basyigit, Radiation shielding of concrete containing zeolite. Radiat. Measur. 45(7), 827-830(2010). https://doi.org/10.1016/j.radmeas.2010.04.012
- 13. B. Oto, N. Yıldız, T. Korkut, E. Kavaz, Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Design.293, 166-175(2015). https://doi.org/10.1016/j.nucengdes.2015.07.060
- 14. M. Glinicki, A. Antolik, M. Gawlicki, Evaluation of compatibility of neutron-shielding boron aggregates with Portland cement in mortar. Constr. Build. Mater. 164, 731-738(2018). https://doi.org/10.1016/j.conbuildmat.2017.12.228
- 15. D. Sarıyer, R. Küçer, N. Küçer, Neutron shielding properties of concretes containing boron carbide and ferro-boron. Procedia-Social Behavioral Sci. 195, 1752-1756(2015). https://doi.org/10.1016/j.sbspro.2015.06.320
- 16. Y. Abdullah, M. R. Yusof, A. Muhamad, Z. Samsu, N. Abdullah, Cement-boron carbide concrete as radiation shielding material. J.Nucl. Related Tech. 7(2), 74-79(2010).
- 17. F.N. Ariffin, Y. Abdullah, R. Shamsudin, R. Hamid, SH. Ahmad, Effect of Boron Carbide addition on the physical, mechanical and microstructural properties of Portland cement concrete.J. Appl. Sci.11(22), 3738-3743(2011). https://doi.org/10.3923/jas.2011.3738.3743
- 18. F. Lo Monte, P. G. Gambarova, Thermo-Mechanical Behavior of Baritic Concrete Exposed to High Temperature. Cem. Concr. Comp. 53, 305-315(2014). https://doi.org/10.1016/j.cemconcomp.2014.07.009
- 19. M. Kharita, S. Yousef, M. AlNassar, Review on the addition of boron compounds to radiation shielding concrete. Prog. Nucl. Energy 53, 207-211(2011). https://doi.org/10.1016/j.pnucene.2010.09.012
- 20. M.G. El-Samrah, M. A. Abdel-Rahman, A.M. Kany, Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features, Zeitschr. Organ. Allgem. Chem.644, 92-99(2018). https://doi.org/10.1002/zaac.201700420
- 21. M. Kaçal, F. Akman, M. Sayyed, Evaluation of gamma-ray and neutron attenuation properties of some polymers.Nucl. Eng. Tech.51, 818-824(2019). https://doi.org/10.1016/j.net.2018.11.011
- 22. D. Rezaei-Ochbelagh, S. Azimkhani, H.G. Mosavinejad, Shielding and strength tests of silica fume concrete. Ann. Nucl. Energy. 45, 150-154 (2012). https://doi.org/10.1016/j.anucene.2012.02.006
- 23. M. Rafieizonooz, J. Mirza, M.R. Salim, M.W. Hussin, E. Khankhaje, Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr. Build. Mater.116, 15-24(2016). https://doi.org/10.1016/j.conbuildmat.2016.04.080
- 24. I.M. Nikbin, S. Rahimi, H. Allahyari, M. Damadi, A comprehensive analytical study on the mechanical properties of concrete containing waste bottom ash as natural aggregate replacement, Constr. Build. Mater.121, 746-759(2016). https://doi.org/10.1016/j.conbuildmat.2016.06.078
- 25. M. Alwaeli, Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes. J. Clean. Prod.166, 157-162(2017).https://doi.org/10.1016/j.jclepro.2017.07.203
- 26. M. Alwaeli, The implementation of scale and steel chips waste as a replacement for raw sand in concrete manufacturing. J. Clean. Prod.137, 1038-1044(2016).https://doi.org/10.1016/j.jclepro.2016.07.211
- 27. S. Ghannam, H. Najm, R. Vasconez, Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sust. Mater. Techn.9, 1-9(2016). https://doi.org/10.1016/j.susmat.2016.06.001
- 28. E. Zorla, C. Ipbüker, A. Biland, M. Kiisk, S. Kovaljov, A.H. Tkaczyk, V. Gulik, Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron. Nucl. Eng. Design 313, 306-318(2017). https://doi.org/10.1016/j.nucengdes.2016.12.029
- 29. M. Çullu, H. Ertaş, Determination of the effect of lead mine waste aggregate on some concrete properties and radiation shielding. Constr. Build. Mater. 125, 625-631 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.069
- 30. M.A. González-Ortega, I. Segura, S. Cavalaro, B. Toralles-Carbonari, A. Aguado, A. Andrello, Radiological protection and mechanical properties of concretes with EAF steel slags, Constr. Build. Mater.51, 432-438(2014). https://doi.org/10.1016/j.conbuildmat.2013.10.067
- 31. A.U. Shettima, M. W. Hussin, Y. Ahmad, J. Mirza, Evaluation of iron ore tailings as replacement for fine aggregate in concrete. Constr. Build. Mater. 120, 72-79(2016).https://doi.org/10.1016/j.conbuildmat.2016.05.095
- 32. Y. Yao, X. Zhang, M. Li, R. Yang, T. Jiang, Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive. Radiat. Physic. Chem.127, 188-193(2016). https://doi.org/10.1016/j.radphyschem.2016.06.028
- 33. K. Behfarnia, M. Rostami, Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Constr. Build. Mater. 131, 205-213(2017). https://doi.org/10.1016/j.conbuildmat.2016.11.070
- 34. A. Nazari, S. Riahi, Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles. Mater. Sci. Eng.527, 7663-7672 (2010). https://doi.org/10.1016/j.msea.2010.08.095
- 35. J.I. Tobón, J. Payá, O.J. Restrepo, Study of durability of Portland cement mortars blended with silica nanoparticles. Constr. Build. Mater.80, 92-97(2015). https://doi.org/10.1016/j.conbuildmat.2014.12.074
- 36. S.A. Aleem, M. Heikal, W. Morsi, Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Constr. Build. Mater.59, 151-160(2014). https://doi.org/10.1016/j.conbuildmat.2014.02.039
- 37. M. Heikal, S. Abd-El-Aleem, W. Morsi, Characteristics of blended cements containing nano-silica, HBRC J, 9, 243-255(2013). https://doi.org/10.1016/j.hbrcj.2013.09.001
- 38. A.M. Said, M.S. Zeidan, M. Bassuoni, Y. Tian, Properties of concrete incorporating nano-silica. Constr. Build. Mater.36, 838-844(2012). https://doi.org/10.1016/j.conbuildmat.2012.06.044
- 39. S. Al-Bahar, J. Chakkamalayath, A. Joseph, S. Al-Otaibi, M.J. Abdulsalam, Nano mechanical and Surface Morphological Properties of Hydrated Cement Paste Containing Volcanic Ash and Micro-or Nano-Silica. KSCE J. Civil. Eng.22, 1354-1360(2018). https://doi.org/10.1007/s12205-017-1737-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02a3856b-d119-4e51-aaf7-92ba0e0716ca