PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and development of an e-nose system for the diagnosis of pulmonary diseases

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper was to discuss the design and development of an innovative e-nose system which can detect respiratory ailments by detecting the Volatile Organic Compounds (VOCs) in the expelled breath. In addition to nitrogen, oxygen, and carbon dioxide, the expelled breath contains several VOCs, some of which are indicative of lung-related conditions and can differentiate healthy controls from people affected with pulmonary diseases. Methods: This work detailed the sensor selection process, the assembly of the sensors into a sensor array, the design and implementation of the circuit, sampling methods, and an algorithm for data analysis. The clinical feasibility of the system was checked in 27 lung cancer patients, 22 chronic obstructive pulmonary disease (COPD) patients, and 39 healthy controls including smokers and non-smokers. Results: The classification model developed using the support vector machine (SVM) was able to provide accuracy, sensitivity, and specificity of 88.79, 89.58 and 88.23%, respectively for lung cancer, and 78.70, 72.50 and 82.35%, respectively for COPD. Conclusions: The sensor array system developed with TGS gas sensors was non-invasive, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different, hence, the e-nose system can be used as a potential diagnostic device for patients with lung diseases.
Rocznik
Strony
35--44
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Electronics Engineering, Sathyabama Institute of Science & Technology, Chennai, India
  • Department of Electronics Engineering, Sathyabama Institute of Science & Technology, Chennai, India
Bibliografia
  • [1] AMANN A., POUPART G., TELSER S., LEDOCHOWSKI M., SCHMID A., MECHTCHERIAKOV S., Applications of breath gas analysis in medicine, Int. J. Mass Spectrom., 2004, 239 (2–3), 227–133.
  • [2] BANNIER M.A., VAN DE KANT K.D., Jöbsis Q., DOMPELING E., Feasibility and diagnostic accuracy of an electronic nose in children with asthma and cystic fibrosis, J. Breath Res., 2019, 13 (3), 036009.
  • [3] BLATT R., BONARINI A., MATTEUCCI M., Pattern classification techniques for lung cancer diagnosis by an electronic nose, Computational Intelligence in Healthcare, 2010, 4, 397–423.
  • [4] BYUN H.G., PERSAUD K.C., PISANELLI A.M., Wound-State Monitoring for Burn Patients Using E-Nose/SPME System, ETRI J., 2010, 32 (3), 440–446.
  • [5] BYUN H.G., YU J.B., JEON J.Y., LEE S.Y., HUH J.S., LIM J.O., Exhaled Breath Analysis for Lung Diseases Based on Sensors Array System, Sens. Lett., 2014, 12 (6–7), 1107–1109.
  • [6] CHANG J.E., LEE D.S., BAN S.W., OH J., JUNG M.Y., KIM S.H., JHEON S., Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system, Sensor. Actuat. B-Chem., 2018, 255, 800–807.
  • [7] COVINGTON J.A., WESTENBRINK E.W., OUARET N., HARBORD R., BAILEY C., O’CONNELL N., CULLIS J., WILLIAMS N., NWOKOLO C.U., BARDHAN K.D., ARASARADNAM R.P., Application of a novel tool for diagnosing bile acid diarrhoea, Sensors., 2013, (9), 11899–11912.
  • [8] D’AMICO A., PENNAZZA G., SANTONICO M., MARTINELLI E., ROSCIONI C., GALLUCCIO G., PAOLESSE R., DI NATALE C., An investigation on electronic nose diagnosis of lung cancer, Lung Cancer, 2010, 68 (2), 170–176.
  • [9] DI NATALE C., MACAGNANO A., MARTINELLI E., PAOLESSE R., D’ARCANGELO G., ROSCIONI C., D’AMICO A., Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors, Biosens. Bioelectron., 2003, 18 (10), 1209–1218.
  • [10] DONARELLI M., OTTAVIANO, 2D materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene, Sensors, 2018, 18 (11), 3638.
  • [11] DUDA R.O., HART P.E., STORK D.G., Pattern classification, John Wiley & Sons, 2012.
  • [12] DYMERSKI T., GĘBICKI J., WIŚNIEWSKA P., ŚLIWIŃSKA M., WARDENCKI W., NAMIEŚNIK J., Application of the electronic nose technique to differentiation between model mixtures with COPD markers, Sensors, 2013, 13 (4), 5008–5027.
  • [13] GUOHUA H., YULING W., DANDAN Y., WENWEN D., Fuji apple storage time predictive method using electronic nose, Food Anal. Method, 2013, 6 (1), 82–88.
  • [14] HAKIM M., BROZA Y.Y., BARASH O., PELED N., PHILLIPS M., AMANN A., HAICK H., Volatile organic compounds of lung cancer and possible biochemical pathways, Chem. Rev., 2012, 112 (11), 5949–5966.
  • [15] HOSSEIN-BABAEI F., HOSSEINI-GOLGOO S.M., Analyzing the responses of a thermally modulated gas sensor using a linear system identification technique for gas diagnosis, IEEE Sens. J., 2008, 8 (11), 1837–1847.
  • [16] ITOH T., MATSUBARA I., NISHIBORI M., IZU N., SHIN W., Calibration gas preparation for non-disposable portable MOx, PID, and IER VOC detectors, Sens. Lett., 2012, 10 (3–4), 985–992.
  • [17] JOLAYEMI O.S., TOKATLI F., BURATTI S., ALAMPRESE C., Discriminative capacities of infrared spectroscopy and enose on Turkish olive oils, Eur. Food Res. Technol., 2017, 243 (11), 2035–2042.
  • [18] KOROTCENKOV G., CHO B.K., Metal oxide composites in conductometric gas sensors: Achievements and challenges, Sensor. Actuat. B-Chem., 2017, 244, 182–210.
  • [19] LI W., LIU H., XIE D., HE Z., PI X., Lung cancer screening based on type-different sensor arrays, Sci. Rep-U.K., 2017, 7 (1), 1–12, 2017.
  • [20] MANNINO D.M., BUIST A.S., Global burden of COPD: risk factors, prevalence, and future trends, The Lancet, 2007, 370 (9589), 765–773.
  • [21] MARZORATI D., MAINARDI L., SEDDA G., GASPARRI R., SPAGGIARI L., CERVERI P., A Metal Oxide Gas Sensors Array for Lung Cancer Diagnosis Through Exhaled Breath Analysis, 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, 1584–1587.
  • [22] OGUMA T., NAGAOKA T., KURAHASHI M., KOBAYASHI N., YAMAMORI S., TSUJI C., HAYAMA N., Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer, PloS One, 2017, 12 (4), e0174802.
  • [23] PASINI P., POWAR N., GUTIERREZ-OSUNA R., DAUNERT S., RODA A., Use of a gas-sensor array for detecting volatile organic compounds (VOC) in chemically induced cells, Anal. Bioanal. Chem., 2004, 378 (1), 76–83.
  • [24] PAVLOU A.K., MAGAN N., MCNULTY C., JONES .JM., SHARP D., BROWN J., TURNER A.P., Use of an electronic nose system for diagnoses of urinary tract infections, Biosens. Bioelectron., 2002, 17 (10), 893–899.
  • [25] ROINE A., VESKIMÄE E., TUOKKO A., KUMPULAINEN P., KOSKIMÄKI J., KEINÄNEN T.A., HÄKKINEN M.R., VEPSÄLÄINEN J., PAAVONEN T., LEKKALA J., LEHTIMÄKI T., Detection of prostate cancer by an electronic nose: a proof of principle study, J. Urology, 2014, 192 (1), 230–235.
  • [26] TAN J.L., YONG Z.X., LIAM C.K., Using a chemiresistorbased alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer, J. Thorac. Dis., 2016, 8 (10), 2772.
  • [27] VOSS A., BAIER V., REISCH R., VON RODA K., ELSNER P., AHLERS H., STEIN G., Smelling renal dysfunction via electronic nose, Ann. Biomed. Eng., 2005, 33 (5), 656–660.
  • [28] VELÁSQUEZ A., DURÁN C.M., GUALDRON O., RODRÍGUEZ J.C., MANJARRES L., Electronic nose to detect patients with COPD from exhaled breath, [in:] AIP Conference Proceedings, 2009, Vol. 1137, No. 1, 452–454.
  • [29] WOJNOWSKI W., DYMERSKI T., GĘBICKI J., NAMIEŚNIK J., Electronic noses in medical diagnostics, Curr. Med. Chem., 2019, 26 (1), 197–215.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-029bcfca-eb02-4ca9-ba47-584f74bea04d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.