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Blast-induced noise level prediction model based on
Brain Inspired Emotional Neural Network
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a Faculty of Mineral Resources Technology, Department of Mining Engineering, University of Mines and Technology, Tarkwa, Ghana
b Faculty of Mineral Resources Technology, Department of Geomatic Engineering, University of Mines and Technology, Tarkwa, Ghana

Abstract

Although a major portion of the emitted energy from mine blast is sub-audible (lower frequency), there exist
a component that is audible (high frequencies from 20Hz to 20 KHz) and as such within the range of human hearing as
noise. Unlike blast air overpressure (low frequency occurrence), noise prediction from mine blasting has received little
scholarly attention in mining sciences. Noise from mine blast is considered a major detrimental blasting effect and can
be a menace to nearby residents and workers in the mine. In this paper, a blast-induced noise level prediction model
based on Brain Inspired Emotional Neural Network (BENN) is presented. The objective of this paper was to investigate
the implementation possibility of the proposed BENN approach along with six other artificial intelligent methods, such
as Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), Generalised Regression
Neural Network (GRNN), Group Method of Data Handling (GMDH), Least Squares Support Vector Machine (LSSVM)
and Support Vector Machine (SVM). The study also implemented the standard Multiple Linear Regression (MLR) for
comparison purposes. The statistical analysis carried out revealed that the BENN performed better than the other
investigated methods. Thus, the BENN achieved very promising testing results of 1.619 dB, 3.076%, 0.0925%, 0.911 and
82.956% for root mean squared error (RMSE), mean absolute percentage error (MAPE), normalised root mean squared
error (NRMSE), correlation coefficient (R) and variance accounted for (VAF). The implemented BENN can be useful in
managing noise from mine blasting using site specific data.

Keywords: artificial intelligence, blast-induced noise level, emotional neural network, limbic system theory

1. Introduction

L oading, hauling, crushing, grinding and
milling are the major constituents of down-

stream activities in mine operations which are
geared towards achieving high mineral recovery
rate. For optimum downstream operations,
controlled blasting is the predominant measure
usually employed to fragment consolidated min-
eral deposits in a surface or underground mine.
Implementing controlled blasting increases mine
efficiency and productivity which can lead to
substantial savings in mining cost and control
adverse blast-induced environmental effects such
as noise, air blast, ground vibration, fly rock and
over-break. Adopting controlled blasting measure

also contributes to easing issues relating to public
relation and improves significantly the safety
standard.
Modelling and predicting adverse blast-induced

environmental effects is a hot topic in mining sci-
ences. Because of that, several mathematical
methods have been proposed in literature. The most
notable blast-induced environmental effects that are
well investigated include ground vibration [1,2], air
blast [3], flyrock [4,5] and over-break [6,7]. From
literature, it was evident that prediction of blast-
induced noise has been under explored and thus
given little scholarly attention within the mining
science community. That is, the existing literature
have only considered noise generated from the
operation of different set of mine machineries used
in surface and underground mines [8e16].
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Therefore, prediction studies into blast-induced
noise is an area which needs to be explored to
safeguard the working environment and the mining
community at large.
Generally, noise is classified as environmental

hazard which is found to be among the impacts of
blasting on the environment. In order to achieve
minimum negative impact of noise in a mine and its
surrounding communities, it is essential to find
ways of optimising mine blasting. It is a matter of
the utmost importance to understand the causal
agents and their influence on a blast design. This is
because a well-designed blast will produce opti-
mum blast-induced noise level that falls within the
allowable threshold value. In the light of this, highly
potent mathematical predictive tools are needed to
provide prior blasting outcome information to the
blast engineer. Moreover, in view of the complexity
and nonlinearity of the blast designed parameters,
a highly accurate nonlinear predictive model is
indeed necessary for step ahead noise estimation
prior to blasting.
It is interesting to know that traditional Artificial

Intelligence (AI) techniques such as Adaptive Neuro
Fuzzy Inference System (ANFIS), Backpropagation
Neural Network (BPNN) and Radial Basis Function
Neural Network (RBFNN) have generally been
applied by scholars to predict different noise sour-
ces [8e27] other than blast-induced noise. The use
of these methods have been typically influenced by
its ability to adaptively handle nonlinear data sets in
an adequate manner. On the contrary, it has been
found that most of the traditional AI methods often
exhibit some practical drawbacks such as manually
fine-tuning adjustable parameters, less convergence
speed due to the use of gradient training algorithms,
results not achieving global optimum, suffering
from curse of dimensionality and high computa-
tional cost [28]. In contrast to the traditional AI
methods, the limbic system theory of Brain Inspired
Emotional Neural Network (BENN) has been found
to offer certain practical advantages and is consid-
ered as a reliable alternative. Practically, the BENN
approach eliminates manual tasking in the model
development, offers strong calibration and gener-
alisation performance, provides quick reaction and
instinctively process external information with
reduction in computational complexity [28]. In view
of BENN strengths, this study explored its capability
as a new forecasting technique in blast-induced
noise level prediction.
To show the excellent generalisation strength of

BENN, the standard multiple linear regression

(MLR) and six other AI methods were also applied
for comparison. The AI methods applied to be
compared with BENN included BPNN, RBFNN,
Generalised Regression Neural Network (GRNN),
Group Method of Data Handling (GMDH), Least
Squares Support Vector Machine (LSSVM) and
Support Vector Machine (SVM). These methods
have been selected for comparison because they are
the most widely used by scholars in predicting other
investigated adverse effects of blasting (e.g. ground
vibration, flyrock, air overpressure, etc.). Hence,
they are deemed appropriate to be used in this
study for comparison with the BENN approach. The
present study is a contribution to body of knowl-
edge and will fill the literature gap in the use of AI
for modelling and prediction of blast-induced noise.
The study will further advance the application
frontiers of the limbic based system of BENN and
will confirm its universal function approximation
capabilities. The statement is buttressed by the fact
that despite the extensive application of BENN in
different disciplines [28e37], the method has not
fully explored in the direction of blast-induced noise
level prediction studies.

2. Proposed method

In this study, the BPNN, RBFNN, GRNN, GMDH,
LSSVM, SVM and MLR methods were applied for
comparison purpose because they are widely
regarded as benchmark methods. There has been
extensive literature in mining science to ascertain
their capability to predict other blast-induced envi-
ronmental effects such as ground vibration, air blast,
flyrock and over-break. Detailed information on
them can be found in Refs. [1e7]. This section only
presents the theoretical and mathematical back-
ground of BENN.
The BENN considers the anatomical and physio-

logical conditions of the mammalian brain by arti-
ficially mimicking the nervous system [28]. This
technique has been found to evolve from the limbic
system of the mammalian brain that handles emo-
tions and memory. In the limbic system, several
brain structures such as amygdala, thalamus, orbi-
tofrontal cortex, sensory cortex, hippocampus and
hypothalamus are involved. As can be seen in Fig. 1,
for BENN the thalamus serves as a channel to
receive input neurons from the outside world which
are then transferred directly to the sensory cortex
for further processing. In the amygdala, information
is received in two different ways. The first is
receiving imprecise expanded input neurons
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directly from the thalamus through the least path of
sensory information transmission. The second is
receiving precise information from the sensory
cortex through the longest path of sensory infor-
mation transfer. The orbitofrontal cortex handles the
convergence of the processed information from the
sensory cortex and inhibit the inappropriate amyg-
dala responses to achieve the preferred outcome. It
must be noted that accurate response can be found
by the BENN system at the amygdala-orbitofrontal
cortex interaction.
Practically, the motive of applying BENN in this

study is to create a model that can adequately pre-
dict blast-induced noise level given a set of input
data X ¼ fx1; x2;…; xnþ1g and target dataY ¼ fy1;y2;
…ynþ1g; n ¼ 1; 2; 3; …N. Relating the X and Y
information to the BENN structure (Fig. 1), the
thalamus directly receives the X data which is then
sent to the sensory cortex. The sensory cortex data is
then transmitted to the orbitofrontal cortex. The
amygdala then receives the imprecise response
from the thalamus designated as xnþ1(Eq. (1)) and
precise response from the sensory cortex based on
the input datax1; x2;…; xn.

xnþ1¼meanj¼1;…;n
�
xj
� ð1Þ

In order to simulate the imprecision exhibited
in the thalamus response, the mean operator (Eq.
(2)) is used.

Q¼Qa �Qb ð2Þ

where Q is the final response, Qa (Eq. (3)) and Qb

(Eq. (4)) represent the various responses from

amygdala and orbitofrontal cortex. Equation (2)
signifies that for the BENN system, Q is heavily
reliant on the interaction between amygdala and
orbitofrontal cortex. However, the orbitofrontal
cortex in the computational process limits the in-
fluence of amygdala imprecise response in the final
outputs [38,39].

Qa¼
Xnþ1

j¼1

�
ej�xj

� ð3Þ

Qb¼
Xn

j¼1

�
wj�xj

�þ b ð4Þ

where ej and wj are the respective weights for the
amygdala and orbitofrontal cortex. The xj is the
input data and b is the bias term in the orbitofrontal
cortex. Weight adaptation was done in the training
process using genetic algorithm. In this study, the
BENN blast-induced noise level prediction model
was created by modifying the MATLAB program
proposed by Ref. [40].

3. Study area and data description

3.1. Study area

The case study is a mining company (hereafter
Mine X) located in the Western Region of Ghana.
Mine X is located approximately 4 km west of the
Tarkwa Nsuaem Municipality and 60 km to the
South of the Atlantic coast with a topography
dominated by pronounced ridges and valleys. These
ridges are mainly composed of the Banket Series

Fig. 1. General BENN structure.
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and Tarkwa Phyllites with the low-lying areas
dominated by sandstones/quartzites [41]. The
Tarkwa basin is filled with a fine upward sequence
of clastic sedimentary rocks known as the Tark-
waian Group which are of Proterozoic age. Fig. 2
shows the geological setting of the study area.
Mine X employs the surface mining method and

operates six open pits which have been divided into
two sections with each section constituting three
open pits. Four standard units of downstream op-
erations namely drilling, blasting, loading and
hauling are employed to fragment rocks and haul
the fragmented material to the run-off-mine pad.
The Mine uses Pantera (Sandvik DP 1500i) and
Epiroc drill rigs for drilling blast holes. The drilling
parameters include 9m bench height with 1.2m
sub-drill with hole diameter of 127mm for blast
production holes and 115mm for drilling pre-split
or buffer holes. The staggered blast patterns are
employed by the Mine using different burden and
spacing depending on the rock conditions for both
ore and waste. The burden and spacing mostly
employed include 3.5m� 3.5m, 3.5 m� 4.0m and
4.0m� 4.0m. Blasting of in situ rock involves the

use of blend type of water resistance bulk explosive
(S130) which is made up of 70% emulsion and 30%
ammonium nitrate. The nonel and electronic initi-
ators are respectively used for blast hole initiation of
the mine. The mining fleet is a combination of ex-
cavators (Liebherr 9250, Liebherr 9350 and Liebherr
996B), 100-tonne (CAT 777D) and 144-tonne (CAT
785D) capacity haul trucks.

3.2. Data description

In order to develop the blast-induced noise level
prediction model, 324 blast events data were ac-
quired from Mine X. The data collected comprised
of blast design and explosive parameters obtained
from the daily blast design plan. These included
number of blast holes, maximum instantaneous
charge (kg), blast hole depth (m), stemming length
(m), powder factor (kg/m3), total charge (kg) and,
distance from monitoring and blasting site (m). It is
important to know that the distance between
monitoring station and blast point is computed
using the two-dimensional Euclidean distance (ED)
formula (Eq. (5)).

Fig. 2. Geological setting of the study area.
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ED¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEMS � EBPÞ2 þ ðNMS �NBPÞ2

q
ð5Þ

where EMS and NMS represent Easting and Northing
coordinates for the monitoring stations while EBP
and NBP is the coordinate of the blast point.
The Instantel Micromate Seismograph instrument

comprising of a single geophone and a microphone
is used to measure the noise from mine blasting. In
the field of observation, the geophone is firmly fixed
on the ground at a nearby house closest to the Mine
pit with the geophone arrow directed towards the
blast location. Thus, the Instantel Micromate Seis-
mograph was set at the same distance (location)
with different direction depending on the position
of the blast. Hence, the monitoring could be behind,
at the side or in front of the blast face depending on
the blast location. It is worth stating that the noise
monitoring was carried out at a different elevation
relative to the mining face as the monitoring was
done at the nearest building in the neighbouring
community to the mining pit which has been mined
downwards. Prior to blasting, mining equipment are
parked at a safe distance away from the blasting
area with all activities within and outside the pit
halted to ensure the recorded noise level are only
due to blasting. In order to avoid external influence
and ensure accurate blast-induced noise level re-
cordings, the seismic instrument is calibrated before
readings are made. In the calibration process, the
seismic instrument is first set to a continuous
reading mode after which the ambient (surround-
ing) noise levels are recorded. These recorded
ambient noise levels then serve as the below
detection levels to overcome any surrounding noise
levels throughout the monitoring and recording the
blast. Descriptive statistics of the data set used is
presented in Table 1.

4. Model development process

The BENN blast-induced noise level prediction
model was developed using a total of 324 data sets.

The data was then divided into training and testing
sets, respectively. The training set which is made up
of 227 data points constituting 70% of the entire data
were used to build and fit the model. The trained
model was independently validated using the
remaining 30% (97 data points). The percentage di-
visions of the data was based on the commonly used
hold-out cross validation approach in literature
[42e45]. The issues of over- and underfitting where
the trained model over- and under-estimate the test
data were taken into account during the model
training phase using the RMSE criterion. Thus, the
optimum model was achieved by selecting the
trained model that provided the lowest RMSE with
respect to the test data and thus has a minimal
difference between the training and testing RMSE.
In the model building, the blast design and explo-
sive parameters used as input variables include the
number of blast holes, maximum instantaneous
charge (kg), blast hole depth (m), stemming length
(m), total charge (kg), distance from monitoring and
blasting site (m) and powder factor (kg/m3).
Practically, it is a well-known fact in blast man-

agement that, the effectiveness of a blast is affected
by the entire facets of blast design. Therefore,
a number of interconnected blast design parameters
which are deemed relevant must be considered in
the model development process. These assertions
have been echoed in literature that the selected
input parameters used in this study have been
found to have massive influence in predicting mine
blasting outcomes such as air overpressure, ground
vibration, fly rock, over break, etc. Additionally, the
selected input parameters used in this study are in
consonance with the practice of most scholars when
predicting the aforementioned blasting outcomes
[46e54]. Hence, it was deemed fit to use the selected
input parameters for predicting the blast-induced
noise level (dB) considered in this study.
In order to improve the computational conver-

gence of the various methods applied, data

Table 1. Descriptive statistics of the variables for the entire data (total observation¼ 324).

Variables Statistic

Mean Standard Deviation Minimum Maximum

Number of blast holes 106.753 65.309 13.00 423
Maximum instantaneous charge (kg) 72.270 31.400 10.76 175
Blast hole depth (m) 8.256 1.949 3.40 10.20
Stemming length (m) 3.197 0.382 1.80 3.50
Total charge (kg) 8091.99 6782.20 495 49,100
Distance from monitoring to blasting site (m) 1312.40 516.37 518 3862
Powder factor (kg/m3) 0.672 0.177 0.24 2.07
Noise (dB) 42.879 4.157 33.10 53.40
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normalisation was first performed on the input data
into the interval [�1, 1] using Eq. (6) [55].

bi ¼ bmin þ ðbmax � bminÞ � ðci � cminÞ
ðcmax � cminÞ ð6Þ

where bi is the normalised data, ci is the input data,
cmax and cmin are the input variable's maximum and
minimum values with cmax and cmin taking on values
of 1 and �1.
In the model validation phase, the following sta-

tistical performance metrics were used to assess the
predictive strength of the models developed. These
were the root mean square error (RMSE), normal-
ised root mean square error (NRMSE), mean abso-
lute percentage error (MAPE), variance accounted
for (VAF) and correlation coefficient (R). These are
represented mathematically in Eqs. (7)e(11).

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðTi � PiÞ2
vuut ð7Þ

MAPE¼100%
N

XN
i¼1

jTi � Pij
Ti

ð8Þ

NRMSE¼ RMSE
Tmax � Tmin

ð9Þ

R ¼

0
BBBB@

PN
i¼1

�
Ti � T

��
Pi � P

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
Ti � T

�2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
Pi � P

�2
s

1
CCCCA ð10Þ

VAF¼
�
1�varðTi � PiÞ

varðTiÞ
�
� 100 ð11Þ

where Ti and Pi represent the measured and pre-
dicted blast-induced noise level. Tmax and Tmin are
the maximum and minimum values of the
measured blast-induced noise level. The T and P are
the average values for the measured and predicted
blast-induced noise level. N depicts the total blast-

induced noise level data and i takes values from 1 to
N.

5. Results and discussion

5.1. BENN blast-induced noise level prediction
model

The BENN approach uses the simulated human
brain emotional process to train the network. It is
important to note that BENN proposed in Lotfi [28]
uses the genetic algorithm to fine-tune the numer-
ical weights of the network. In this study, the widely
used sequential trial and error approach was
adopted to determine the best population size and
number of generations that can produce the best
BENN blast-induced noise level predictions. After
several trials in this study, a population size of 100
and 1000 number of generations produced the op-
timum BENN results. The optimum model was ob-
tained by selecting the model that attains the best
values with respect to the performance criteria (Eqs.
(7) to (11)) utilised.
Table 2 presents the training and testing results

for the various performance criteria used to assess
the validity of the BENN model. In Table 2, it can be
seen that there is no evidence of over-fitting con-
dition because of the peculiar characteristic feature
of the training and testing results. That is, the ob-
tained training and testing results based on the
statistical indicators have closely related values with
only some slight difference between them. This
means that the BENN has greater learning capabil-
ities with regards to the training data and could
generalise adequately on the testing data. From
the error indicators (RMSE, MAPE and NRMSE)
(Table 2), it can generally be interpreted that the
BENN blast-induced noise level predictions are
close to the measured data points. In Table 2, the
R and VAF that generally show the relative measure
of fit show that the BENN model when applied
produced highly accurate blast-induced noise level
predictions.

5.2. Comparison of BENN and other applied
methods

The BENN blast-induced prediction model result
was compared with six AI methods (BPNN, RBFNN,
GRNN, GMDH, LSSVM and SVM) and classical
MLR approach. These comparative methods were
chosen because they have been found in literature
to be the most widely used in both noise related
works and predicting blasting outcomes (e.g.
ground vibration, air blast, fly rock, etc.). Hence,

Table 2. BENN model performance results.

Statistical Indicators BENN Model Unit

Training Testing

RMSE 1.679 1.619 dB
MAPE 2.904 3.076 %
NRMSE 0.083 0.092 %
R 0.907 0.911 e
VAF 82.187 82.956 %

JOURNAL OF SUSTAINABLE MINING 2021;20:28e38 33

R
E
S
E
A
R
C
H

A
R
T
IC

L
E



they are categorised as benchmark techniques and
suitable for comparison purpose. It is important to
indicate that the same training and testing data
sets used for the BENN technique were used to
develop the prediction models for the mentioned
comparative methods. The same optimum model
selection criteria used for the BENN were
employed for the other investigated methods.
In the BPNN, the best performing model archi-

tecture was [7e4e1] that is, seven inputs, four
hidden neurons and one output. In the training
phase, the Levenberg Marquardt algorithm [56]
was used for the weight adaptation. In the hidden
and output layers, the hyperbolic tangent and
linear activation functions [57] were respectively
utilised. The momentum coefficient and learning
rate values used were 0.7 and 0.03 respectively. For
the RBFNN, the optimum model structure was
seven inputs, twenty two hidden neurons and one
output, that is [7e22e1] with a smoothing param-
eter of 16.1. The optimum GRNN model perfor-
mance had a smoothing parameter of 0.11. To train
the LSSVM model, the linear kernel function with
regularisation parameter value of 0.49213 pro-
duced the best prediction results. A polynomial
kernel function of order 1 and penalty factor value
of 50 with error parameter factor set at 1.00� 10�8

produced the optimum SVM model predictions.
The best performing GMDH model had four
layers, four used variables in the input layer and
one neuron in both successive hidden and output
layers. The GMDH has a feature extraction capa-
bility and that was demonstrated when the final
model was established. This can be seen in Table 3
where only four parameters (number of blast
holes, maximum instantaneous charge, stemming
length and distance from monitoring to blasting
site) out of the seven were selected as the most
relevant parameters in the GMDHmodel building.
NB: x1 is the number of blast holes, x2 is the

maximum instantaneous charge, x4 is the stem-
ming length and x6 is the distance from monitoring
to blasting site.
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Table 4. Model adequacy assessment test results.

Model RMSE (dB) MAPE (%) NRMSE (%) R VAF (%)

BENN 1.619 3.076 0.092 0.911 82.956
BPNN 1.621 3.214 0.093 0.914 82.839
RBFNN 1.629 3.202 0.093 0.919 82.944
GRNN 1.944 3.689 0.111 0.874 75.578
GMDH 1.809 3.597 0.103 0.905 79.481
LSSVM 1.642 3.186 0.094 0.910 82.673
SVM 1.906 3.825 0.109 0.909 77.729
MLR 2.827 3.126 0.162 0.821 82.879
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The MLR predicted model developed is of the
form shown in Eq. (12) where x1, x2, x3, x4, x5, x6 and
x7 are number of blast holes, maximum instanta-
neous charge, blast hole depth, stemming length,
total charge, distance from monitoring to blasting
site, and powder factor respectively.

The practical usefulness of the proposed BENN
and the other investigated approaches were
assessed based on the testing data. This was
essential because the testing data was not used at
the initial formulation of the models and thus can
provide independent validity assessment of the

Fig. 3. RMSE test results for the various models.

Fig. 4. MAPE test results for the various models.

MLR Model ¼ 47:29732þ 1:6277� 10�02ðx1Þ þ 9:8254� 10�02ðx2Þ � 0:80765ðx3Þ
1:406725ðx4Þ þ 4:82� 10�05ðx5Þ � 0:00776ðx6Þ � 1:83105ðx7Þ ð12Þ
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generalisation ability of the models developed.
Table 4 shows the various models evaluation test
results based on the statistical performance metrics
applied.
The RMSE signifies a measure of a model pre-

dictive accuracy. Using the RMSE (Table 4), the
comparative results obtained from the various
models showed that the proposed BENN approach
provides the best absolute fitted blast-induced noise
level values to the measured test data. The inter-
pretation here is that the BENN model outcomes
were in better agreement to the measured blast-
induced noise level than the other methods. With
regards to the MAPE value, it can be explained that
when the BENN model is applied a percentage error
margin within 3.076% can be achieved which signify
a prediction percentage accuracy of 96.924%. On the
contrary, BPNN, RBFNN, GRNN, GMDH, LSSVM,
SVM and MLR achieved 96.786%, 96.798%, 96.311%,
96.403%, 96.814%, 96.175% and 96.874% respec-
tively. Pictorial representation of the RMSE and
MAPE to confirm BENN predictive strength are
shown in Figs. 3 and 4. The MAPE results are in
consonance to the NRMSE value obtained by BENN
which indicate less variations in the computed er-
rors (difference between the measured and pre-
dicted test results). This buttresses the assertion that
the closer the NRMSE (Table 4) value is to zero, the
lower the residual variance which depict a minimal
unexplained variability in the BENN predicted
blast-induced noise level when compared with the
measured test data.
Comparing the R test results (Table 4), it was

generally noted that the BENN, BPNN, RBFNN,
GRNN, GMDH, LSSVM, SVM and MLR all had
positive correlation coefficient values. It can be
agreed that all the models exhibited a direct linear
relationship between their predicted outputs and
measured blast-induced noise level. In Table 4,
although BENN, BPNN, RBFNN, LSSVM and MLR
all produced VAF values above 80%, BENN was
slightly better than the others. This means that the

BENN could explain 82.956% of possible errors
inhibited in its predicted results. It must be noted
that the VAF value determines the prediction
strength of the models. A VAF value bigger than
80% is categorised as excellent model, a VAF value
between 20% and 80% means a good model, while
a VAF value less than 20% means worse model. In
line with that, the BENN was a much better model
as compared to the other methods. It is worth clar-
ifying that the different statistical results produced
by all the models investigated is based on the de-
gree of calibration and generalisation strength of
a particular model on the training and testing data,
respectively.
To further compare the accuracy of the developed

models, violin plot (Fig. 5) of the predicted against
the measured blast-induced noise level is presented.
The violin plot provides the statistical distribution of
the measured and predicted data. In Fig. 5, it can be
seen that the predicted noise level distributions
within each model show some form of variability.
However, the variability noticed for the BENN
predictions are fairly consistent and do not exhibit
any skewness property in its distribution. The other
models’ variability can be seen to have some in-
consistencies in their distributions. This shows that
the BENN could correctly predict the blast-induced
noise level at high precision and accuracy.

6. Conclusions

In this paper, the BENN has been proposed and
applied to predict blast-induced noise level. The
BENN was compared with six AI methods (BPNN,
RBFNN, GRNN, GMDH, LSSVM and SVM) and
MLR approach. Comparative analysis was carried
out using statistical performance metrics of RMSE,
MAPE, NRMSE, R and VAF. From the experimental
results, it was revealed that the proposed BENN
approach has better calibration and prediction ca-
pabilities than that of the other methods. Besides,
the BENN architectural design enables automatic

Fig. 5. Violin Plots for the Measured and Predicted Blast-induced Noise Level for each Model.
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computational process and is thus devoid of human
interference with final results produced without
parameter settings. Hence, it is mathematically
sound and attractive to adopt and employ BENN in
managing blast-induced noise level in the mines.
Consequently, this study as a major contribution
has provided scholarly attention to blast-induced
noise level prediction in mining sciences with BENN
introduced as a novel computational predictive tool.
A limitation of this study is the lack of empirical
equations and previous studies on the topic under
study. Therefore, for future research, there is the
need to develop empirical noise predictor equations
that accept blasting and explosive design parame-
ters as its input variables. This will in general
expand the research frontiers of noise prediction.
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