PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Praktyczne aspekty projektów CORNET realizowanych przez PSK we współpracy z jednostkami badawczymi

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Practical aspects of CORNET projects carried out by PSK in cooperation with research centers
Języki publikacji
PL
Abstrakty
PL
Omówiono wyniki badań przeprowadzonych podczas zakończonych i będących w realizacji projektów wykonywanych w ramach Inicjatywy CORNET: BioCoat (2014–2016), DuraCoat (2015–2017), ZincPower (2017–2019), EcoWaterZinc (2021–2023), ColourTune (2022–2024), MicroSafeCoatings (2023–2025). W projektach CORNET uwzględnia się zarówno cele naukowe, jak i praktyczne. Uzyskane wyniki pozwalają na poznanie roli mechanizmów działania powłok antykorozyjnych. W praktyce umożliwiają analizę nowych, ekologicznych rozwiązań w zakresie ochrony przed korozją, a także dostarczają wskazówek dotyczących projektowania i badania powłok w celu uzyskania jak najlepszych właściwości antykorozyjnych i dekoracyjnych.
EN
The results of research completed and ongoing projects carried out as part of the CORNET Initiative were discussed: BioCoat (2014–2016), DuraCoat (2015–2017), ZincPower (2017–2019), EcoWaterZinc (2021 2023), ColourTune (2022–2024), MicroSafeCoatings (2023–2025). CORNET projects have both scientific and practical aspects. The results obtained contribute to understanding the role of the mechanisms of anticorrosive coatings. In practice, they provide the opportunity to learn about new, ecological solutions in the field of corrosion protection, as well as guidelines on designing and testing of coatings to obtain the best anticorrosive and decorative properties.
Rocznik
Tom
Strony
306--312
Opis fizyczny
Bibliogr. 85 poz., fot., tab., wykr.
Twórcy
  • Sieć Badawcza Łukasiewicz – Instytut Inżynierii Materiałów Polimerowych i Barwników, Centrum Farb i Tworzyw, Gliwice
autor
  • Sieć Badawcza Łukasiewicz – Instytut Inżynierii Materiałów Polimerowych i Barwników, Centrum Farb i Tworzyw, Gliwice
  • Sieć Badawcza Łukasiewicz – Instytut Inżynierii Materiałów Polimerowych i Barwników, Centrum Farb i Tworzyw, Gliwice
  • Instytut Badawczy Dróg i Mostów, Warszawa
  • Instytut Badawczy Dróg i Mostów, Warszawa
autor
  • Instytut Badawczy Dróg i Mostów, Warszawa
  • Polskie Stowarzyszenie Korozyjne
  • Polskie Stowarzyszenie Korozyjne
  • Wydział Chemiczny, Politechnika Wrocławska, 50-370 Wrocław, Wybrzeże Wyspiańskiego 27 Polskie Stowarzyszenie Korozyjne
  • Polskie Stowarzyszenie Korozyjne
Bibliografia
  • [1] J.T.P. Derksen, F.P. Cuperus, P. Kolster. 1996. “Renewable Resources in Coatings Technology: A Review.” Progress in Organic Coatings 27(1–4): 45–53. DOI: 10.1016/0300-9440(95)00518-8.
  • [2] J. T. P. Derksen, F. P. Cuperus, P. Kolster.1995. “Paints and Coatings from Renewable Resources.” Industrial Crops and Products 3(4): 225–236. DOI: 10.1016/0926-6690(94)00039-2.
  • [3] J.M. Raquez, M. Deléglise, M.F. Lacrampe, P. Krawczak. 2010. “Thermosetting (Bio)Materials Derived from Renewable Resources: A Critical Review.” Progress in Polymer Science 35(4): 487–509. DOI: 10.1016/j.progpolymsci.2010.01.001.
  • [4] N. Reddy, Y. Yang. 2007. “Novel Protein Fibres from Wheat Gluten.” Biomacromolecules 8(2): 638–643. DOI: 10.1021/bm0608840.
  • [5] E. Can, R.P. Wool, S. Küsefoğlu. 2006. “Soybean- and Castor-Oil-Based Thermosetting Polymers: Mechanical Properties.” Journal of Applied Polymer Science 102(2): 1497–1504. DOI: 10.1002/app.24423.
  • [6] L. Montero de Espinosa, M. A. R. Meier. 2011. “Plant Oils: The Perfect Renewable Resource for Polymer Science?!” European Polymer Journal 47(5): 837–852. DOI: 10.1016/j.eurpolymj.2010.11.020.
  • [7] S. Pramanik, R. Konwarh, K. Sagar, B.K. Konwar, N. Karak. 2013. “Bio-Degradable Vegetable Oil Based Hyperbranched Poly(Ester Amide) as an Advanced Surface Coating Material.” Progress in Organic Coatings 76(4): 689–697. DOI: 10.1016/j.porgcoat.2012.12.011.
  • [8] H. Deka, N. Karak. 2009. “Bio-Based Hyperbranched Polyurethanes for Surface Coating Applications.”Progress in Organic Coatings 66(3): 192–198. DOI: 10.1016/j.porgcoat.2009.07.005.
  • [9] S. Thakur, N. Karak. 2013. “Castor Oil-Based Hyperbranched Poliurethanes as Advanced Surface Coating Materials.” Progress in Organic Coatings 76(1): 157–164. DOI: 10.1016/j.porgcoat.2012.09.001.
  • [10] M. Ł. Mamiński, P. G. Parzuchowski, A. Trojanowska, S. Dziewulski. 2011. “Fast-Curing Polyurethane Adhesives Derived from Environmentally Friendly Hyperbranched Polyglycerols – The Effect of Macromonomer Structure.” Biomass and Bioenergy 35(10): 4461–4468. DOI: 10.1016/j.biombioe.2011.09.012.
  • [11] J. Lu, S. Khot, R.P. Wool. 2005. “New Sheet Molding Compound Resins from Soybean Oil. I. Synthesis and Characterization.” Polymer 46(1): 71–80. DOI: 10.1016/j.polymer.2004.10.060.
  • [12] F.S. Güner, Y. Yağcı, A. T. Erciyes. 2006. “Polymers from Triglyceride Oils.” Progress in Polymer Science 31(7): 633–670. DOI: 10.1016/j.progpolymsci.2006.07.001.
  • [13] V. Sharma, P.P. Kundu. 2006. “Addition Polymers from Natural Oils – A Review.” Progress in Polymer Science 31(11): 983–1008. DOI: 10.1016/j.progpolymsci.2006.09.003.
  • [14] J. Lu, R.P. Wool. 2008. “Additive Toughening Effects on New Bio-Based Thermosetting Resins from Plant Oils.” Composites Science and Technology 68(3– 4): 1025–1033. DOI: 10.1016/j.compscitech.2007.07.009.
  • [15] L. M. Bonnaillie, R. P. Wool. 2007. “Thermosetting Foam with a High Bio-Based Content from Acrylated Epoxidized Soybean Oil and Carbon Dioxide.” Journal of Applied Polymer Science 105(3): 1042–1052. DOI: 10.1002/ app.26182.
  • [16] S. Panigrahi, X. Li, S. Panigrahi, R.L. Kushwaha, H.N. Dhakal. 2010. “Development of Flax Oil-Based Biopolymer for Biocomposites.” Commercial Vehicles 2(2): 123–130. DOI: 10.4271/2009-01-2869.
  • [17] M. Alam, D. Akram, E. Sharmin, F. Zafar, S. Ahmad. 2014. “Vegetable Oil Based Eco-Friendly Coating Materials: A Review Article.” Arabian Journal of Chemistry 7(4): 469–479. DOI: 10.1016/j.arabjc.2013.12.023.
  • [18] S. Yadav, F. Zafar, A. Hasnat, S. Ahmad. 2009. “Poly (Urethane Fatty Amide) Resin from Linseed Oil – A Renewable Resource.” Progress in Organic Coatings 64(1): 27–32. DOI: 10.1016/j.porgcoat.2008.07.006.
  • [19] X. Kong, G. Liu, H. Qi, J.M. Curtis. 2013. “Preparation and Characterization of High-Solid Polyurethane Coating Systems Based on Vegetable Oil Derived Polyols.” Progress in Organic Coatings 76(9): 1151–1160. DOI: 10.1016/j.porgcoat.2013.03.019.
  • [20] M.C.C. Ferrera, D. Babb, A.J. Ryan. 2008. “Characterisation of Polyurethane Networks Based on Vegetable Derived Polyol.” Polymer 49(15): 3279–3287. DOI: 10.1016/j.polymer.2008.05.017.
  • [21] S. Dutta, N. Karak, T. Jana. 2009. “Evaluation of Mesua ferrea L. Seed Oil Modified Polyurethane Paints.” Progress in Organic Coatings 65(1): 131–135. DOI: 10.1016/j.porgcoat.2008.10.008.
  • [22] C. Philipp, S. Eschig. 2012. “Waterborne Polyurethane Wood Coatings Based on Rapeseed Fatty Acid Methyl Esters.” Progress in Organic Coatings 74(4): 705–711. DOI: 10.1016/j.porgcoat.2011.09.028.
  • [23] G. Das, N. Karak. 2010. “Mesua ferrera L. Seed Oil-Based Epoxy Resins.” Journal of Applied Polymer Science 118(1): 128–134. DOI: 10.1002/app.32283.
  • [24] M. Y. Shan, S. Ahmad. 2012. “Waterborne Vegetable Oil Epoxy Coatings: Preparation and Characterization.” Progress in Organic Coatings 75(3): 248– 252. DOI: 10.1016/j.porgcoat.2012.05.001.
  • [25] M. Moreno, M. Goikoetxea, M.J. Barandiaran. 2014. “Waterborne Coatings Based on Sunflower Oil Derivatives.” Advances in Coatings Technology, 12th International Conference ACT’14, Sosnowiec, Poland 1: 14–20.
  • [26] E. Gubbels, J. P. Drijfhout, C. Posthuma-van Tent, L. Jasińska-Walc, B.A.J. Noordover, C.E. Koning. 2014. “Bio-Based Semi-Aromatic Polyesters for Coating Applications.” Progress in Organic Coatings 77(1): 277–284. DOI: 10.1016/j.porgcoat.2013.09.012.
  • [27] B.A.J. Noordover, A. Heise, P. Malanowski, D. Senatore, M. Mak, L. Molhoek, R. Duchateau, C.E. Koning. 2009. “Biobased Step-Growth Polymers in Powder Coating Applications.” Progress in Organic Coatings 65(2): 187–196. DOI: 10.1016/j.porgcoat.2008.11.001.
  • [28] B. Gorzolnik, J. Verlaak. 2014. “Sustainable Powder Coatings.” 12th International Conference Advances in Coatings Technology ACT’14, Sosnowiec, Poland 30: 444–449.
  • [29] D. Carteau, K. Vallée-Réhel, I. Linossier, F. Quiniou, R. Davy, C. Compère, M. Delbury, F. Faÿ. 2014. “Development of Environmentally Friendly Antifouling Paints Using Biodegradable Polymer and Lower Toxic Substances.” Progress in Organic Coatings 77(2): 485–493. DOI: 10.1016/j.porgcoat.2013.11.012.
  • [30] M. Moreno, J. I. Miranda, M. Goikoetxea, M. J. Barandiaran. 2014. “Sustainable Polymer Latexes Based on Linoleic Acid for Coatings Applica tions.” Progress in Organic Coatings 77(11): 1709–1714. DOI: 10.1016/j.porgcoat.2014.05.016.
  • [31] J. Dai, S. Ma, X. Liu, L. Han, Y. Wu, X. Dai, J. Zhu. 2015. “Synthesis of Bio-Based Unsaturated Polyester Resins and Their Application in Waterborne UV-Curable Coatings.” Progress in Organic Coatings 78: 49–54. DOI: 10.1016/j.porgcoat.2014.10.007.
  • [32] U. Schulz. 2009. Accelerated Testing: Nature and Artificial Weathering in the Coatings Industry. Hannover: Vincentz.
  • [33] D.A. Claydon. 2003. “Performance Testing of Anticorrosive Coatings.” Coatings World 2: 26–33.
  • [34] P. Schutyser, D. Y. Perera. 1992. ”New Approaches for Testing Coating Durability.“ Proceedings XXI FATIPEC Congress 3: 1.
  • [35] M.J. Crewdson, P. Brennan. 1995. “Outdoor Weathering: Basic Exposure Procedures.” Journal of Protective Coating and Linings 12(9): 17–25.
  • [36] L. D. Vincent. 2009. “Ask the Coatings Experts: Coating Performance Test Methods for Offshore Service Compared to Actual Service Life.” Materials Performance 48(8): 54–58.
  • [37] B. S. Skerry, C. H. Simpson. 1993. “Accelerated Test Method for Assessing Corrosion and Weathering of Paints for Atmospheric Corrosion Control.” Corrosion 49(8): 663–674. DOI: 10.5006/1.3316098.
  • [38] J. Andrews, F. Anwari, B.J. Carlozzo, M. Dilorenzo, R. A. Glover, S. L. Grossman, C. J. Knauss, J. Mccarthy, B. Mysza, R. Patterson, R. Raymond, B. S. Skerry, P. M. Slifko, W. Stipkovich, J.C. Weaver, M. Wolfe. 1996. “Correlation of Accelerated Exposure Testing and Exterior Exposure Sites. Part II: One-Year Results.” Journal of Coatings Technology 68(858): 47–61.
  • [39] E. C. Ferlauto, M. Emami, J. Galante-Fox, M. Grivna, E. Habeck, L. Jones, L. Wood. 1994. “Selection of Corrosion Test Methods Based on Mechanism Principles.” Journal of Coatings Technology 66(835): 85–97.
  • [40] H. Undrum. 2006. “Silicate and Epoxy Zinc Primers: AReview.” Journal of Protective Coatings and Linings 23(6): 52−57.
  • [41] O.Ø. Knudsen, U. Steinsmo, M. Bjordal. 2005. “Zinc-Rich Primers – Test Performance and Electrochemical Properties.” Progress in Organic Coatings 54(3): 224−229. DOI: 10.1016/j.porgcoat.2005.06.009.
  • [42] J.H. Park, T.H. Yun, K.Y. Kim, Y.K. Song, J.M. Park. 2012. “The Improvement of Anticorrosion Properties of Zinc-Rich Organic Coating by Incorporating Surface-Modified Zinc Particle.” Progress in Organic Coatings 74(1): 25–35. DOI: 10.1016/j.porgcoat.2011.09.012.
  • [43] N. Hammouda, H. Chadli, G. Guillemot, K. Belmokre. 2011. “The Corrosion Protection Behaviour of Zinc Rich Epoxy Paint in 3% NaCl Solution.” Advances in Chemical Engineering and Science 1(2): 51−60. DOI: 10.4236/aces.2011.12009.
  • [44] J.R. Vilche, E.C Bucharsky, C.A Giúdice. 2002. “Application of EIS and SEM to Evaluate the Influence of Pigment Shape and Content in ZRP Formulations on the Corrosion Prevention of Naval Steel.” Corrosion Science 44(6): 1287–1309. DOI: 10.1016/S0010-938X(01)00144-5.
  • [45] C. H. Hare. 2001. Paint Film Degradation: Mechanisms and Control. Pittsburgh, Pennsylvania: Society for Protective Coatings.
  • [46] Z.W. Wicks, Jr., F.N. Jones, S.P. Pappas. 1999. Organic Coatings: Science and Technology. Hoboken, New Jersey: Wiley-Interscience.
  • [47] A. Kalendová. 2003. “Effects of Particles Sizes and Shapes of Zinc Metal on the Properties of Anticorrosive Coatings.” Progress in Organic Coatings 46(4): 324–332. DOI: 10.1016/S0300-9440(03)00022-5.
  • [48] R.N. Jagtap, R. Nambiar, S.Z. Hassan, V.C. Malshe. 2007. “Predictive Power for Life and Residual Life of the Zinc Rich Primer Coatings with Electrical Measurement.” Progress in Organic Coatings 58(4): 253–258. DOI: 10.1016/j.porgcoat.2006.08.015.
  • [49] G. Decelles. 2018. “Corrosion Protection Systems Based on Lamellar Zinc Pigments.” European Corrosion Congress EUROCORR 2018, Kraków.
  • [50] L.H. Yang, F.C. Liu, E.H. Han. 2005. “Effect of P/B on the Properties of Anticorrosive Coatings with Different Particle Size.” Progress in Organic Coatings 53(2): 91–98. DOI: 10.1016/j.porgcoat.2005.01.003.
  • [51] P. Benda, A. Kalendová. 2013. “Anticorrosion Properties of Pigments Based on Ferrite Coated Zinc Particles.” Physics Procedia 44: 185–194. DOI: 10.1016/j.phpro.2013.04.023.
  • [52] R.N. Jagtap, P.P. Patil, S.Z. Hassan. 2008. “Effect of Zinc Oxide in Combating Corrosion in Zinc-Rich Primer.” Progress in Organic Coatings 63(4): 389–394. DOI: 10.1016/j.porgcoat.2008.06.012.
  • [53] S. Feliú, Jr., M. Morcillo, J.M. Bastidas Rull. 1991. “Zinc Reactivity in Zinc-Rich Coatings Co-Pigmented with Di-Iron Phosphide.” Journal of Coatings Technology 63: 31–34.
  • [54] A. Kalendová, P. Kalenda, D. Veselý. 2006. “Comparison of the Efficiency of Inorganic Nonmetal Pigments with Zinc Powder in Anticorrosion Paints.” Progress in Organic Coatings 57(1): 1–10. DOI: 10.1016/j.porgcoat.2006.05.015.
  • [55] T. Hawkins, J. Davis, J. Virtanen. 2016. “Nanoscale Coatings for Cathodic Protection of Steel.” Materials Performance 55(4): 34–39.
  • [56] B. Ramezanzadeh, M. H. Mohamadzadeh Moghadam, N. Shohani, M. Mahdavian. 2017. “Effects of Highly Cystalline and Conductive Polyaniline/Graphene Oxide Composites on the Corrosion Protection Performance of a Zinc-Rich Epoxy Coating.” Chemical Engineering Journal 320: 363–375. DOI: 10.1016/j.cej.2017.03.061.
  • [57] S.F. Fancy, M.A. Sabbir, K. Lau, D. DeFord. 2017. “Corrosion Performance of Nano-Particle Enriched Epoxy Primer for Marine Highway Bridge Application.” CORROSION 2017, New Orleans, Louisiana: NACE-2017-9539.
  • [58] B. Ramezanzadeh, E. Ghasemi, M. Mahdavian, E. Changizi, M. H. Mohamadzadeh Moghadam. 2015. “Characterization of Covalently- -Grafted Polyisocyanate Chains onto Graphene Oxide for Polyurethane Composites with Improved Mechanical Properties.” Chemical Engineering Journal 281: 869–883. DOI: 10.1016/j.cej.2015.07.027.
  • [59] A. Ahmadi, B. Ramezanzadeh, M. Mahdavian. 2016. “Hybrid Silane Coating Reinforced with Silanized Graphene Oxide Nanosheets with Improved Corrosion Protective Performance.” RSC Advances 6: 54102–54112. DOI: 10.1039/C6RA04843A.
  • [60] E. Akbarinezhad, M. Ebrahimi, F. Sharif, A. Ghanbarzadeh. 2014. “Evaluating Protection Performance of Zinc Rich Epoxy Paints Modified with Polyaniline and Polyaniline-Clay Nanocomposite.” Progress in Organic Coatings 77(8): 1299–1308. DOI: 10.1016/j.porgcoat.2014.04.009.
  • [61] Y. Cubides, S.S. Su, H. Castaneda. 2016. “Influence of Zinc Content and Chloride Concentration on the Corrosion Protection Performance of Zinc--Rich Epoxy Coatings Containing Carbon Nanotubes on Carbon Steel in Simulated Concrete Pore Environments.” Corrosion 72(11): 1397–1423. DOI: 10.5006/2104.
  • [62] A. Gergely, T. Török, Z. Pászti, I. Bertóti, J. Mihály, E. Kálmán. 2013. Zinc-Rich Paint Coatings Containing Ether Ionic Surfactant-Modified or Functionalized Multi-Walled Carbon Nanotube-Supported Polypyrrole Utilized to Protect Cold- -Rolled Steel against Corrosion. In: A.K. Mishra (ed.). Applications of Carbon Nanotubes. New York: Nova Science Publisher.
  • [63] K. Schaefer, A. Miszczyk, D. J. Mills, K. Darowicki.. 2012. “Influence of Zinc Particle Size on Electrochemical Action of Zinc Rich Paints by Means of Microscopic and Electrochemical Methods.” European Corrosion Congress EUROCORR 2012, Istanbul.
  • [64] K. Schaefer, A. Miszczyk. 2013. “Improvement of Electrochemical Action of Zinc-Rich Paints by Addition of Nanoparticulate Zinc.” Corrosion Science 66: 380–391. DOI: 10.1016/j.corsci.2012.10.004.
  • [65] N. Arianpouya, M. Shishesaz, M. Arianpouya, M. Nematollahi. 2013. “Evaluation of Synergistic Effect of Nanozinc/Nanoclay Additives on the Corrosion Performance of Zinc-Rich Polyurethane Nanocomposite Coatings Using Electrochemical Properties and Salt Spray Testing.” Surface and Coatings Technology 216: 199–206. DOI: 10.1016/j.surfcoat.2012.11.036.
  • [66] L. Chen, Z.Q. Wang, T. Wei, C.J. Xiao. 2015. “Research on the Modification of Water-Borne Inorganic Zinc-Rich Coatings and its Performances.” Advanced Materials Research 1095: 626–630. DOI: 10.4028/www.scientific.net/amr.1095.626.
  • [67] M. Izquierdo, X.R. Nóvoa, G. Pena, L. Espada. 1992. “The Mechanism of Protection of Zinc-Rich Inorganic Coatings: A Study Based on Electrochemical Impedance Spectroscopy (EIS).” Materials Science Forum 111–112: 257–268. DOI: 10.4028/www.scientific.net/msf.111-112.257.
  • [68] A. Thomas. 2009. “Waterborne Silicates as Coatings and Construction Materials. Part 1: Coatings.” Surface Coatings Australia 46(3): 10–18.
  • [69] L. Cheng, C. Liu, D. Han, S. Ma, W. Guo, H. Cai, X. Wang. 2019. “Effect of Graphene on Corrosion Resistance of Waterborne Inorganic Zinc-Rich Coatings.” Journal of Alloys and Compounds 774: 255–264. DOI: 10.1016/j.jallcom.2018.09.315.
  • [70] M. Naser Kakaei, I. Danaee, D. Zaarei. 2013. “Evaluation of Cathodic Protection Behavior of Waterborne Inorganic Zinc-Rich Silicates Containing Various Contents of MIO Pigments.” Anti-Corrosion Methods and Materials 60(1): 37–44. DOI: 10.1108/00035591311287438.
  • [71] X. Yang, W. Zhu. 2017. “The Performance of a Waterborne Zinc-Rich Coating from Sodium Silicate Solution Catalyzed by Ammonium Acetate.” Protection of Metals and Physical Chemistry of Surfaces 53(2): 299–305. DOI: 10.1134/S2070205117020277.
  • [72] E. Akbarinezhad, M. Ebrahimi, F. Sharif, M. M. Attar, H. R. Faridi. 2011. “Synthesis and Evaluating Corrosion Protection Effects of Emeraldine Base PAni/Clay Nanocomposite as a Barrier Pigment in Zinc-Rich Ethyl Silicate Primer.” Progress in Organic Coatings 70(1): 39–44. DOI: 10.1016/j.porgcoat.2010.09.016
  • [73] J. Wang, Y. Qi, X. Zhao, Z. Zhang. 2020. “Electrochemical Investigation of Corrosion Behavior of Epoxy Modified Silicate Zinc-Rich Coatings in 3.5% NaCl Solution.” Coatings 10(5): 444. DOI: 10.3390/coatings10050444.
  • [74] G.M. Wu, Z.W. Kong, J. Chen, S. P. Huo, G. F. Liu. 2014. “Preparation and Properties of Waterborne Polyurethane/Epoxy Resin Composite Coating from Anionic Terpene-Based Polyol Dispersion.” Progress in Organic Coatings 77(2): 315–321. DOI: 10.1016/j.porgcoat.2013.10.005.
  • [75] S. Shengchuang. 2017. Study on Preparation and Performance of Waterborne Silicate Inorganic Zinc-Rich Anticorrosive Coatings. Master’s thesis. Southwest Petroleum University, Chengdu, China.
  • [76] L. Zhang, A. Ma, J. Jiang, D. Song, J. Chen, D. Yang. 2012. “Anti-Corrosion Performance of Waterborne Zn-Rich Coating with Modified Silicon-Based Vehicle and Lamellar Zn (Al) Pigments.” Progress in Natural Science: Materials International 22(4): 326–333. DOI: 10.1016/j.pnsc.2012.07.001.
  • [77] S. Liu, L. Gu, H. Zhao, J. Chen, H. Yu. 2016. “Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings.” Journal of Materials Science and Technology 32(5): 425–431. DOI: 10.1016/j.jmst.2015.12.017.
  • [78] S. Huang, G. Kong, B. Yang, S. Zhang, C. Che. 2020. “Effects of Graphene on the Corrosion Evolution of Zinc Particles in Waterborne Epoxy Zinc-Containing Coatings.” Progress in Organic Coatings 140: 105531. DOI: 10.1016/j.porgcoat.2019.105531.
  • [79] B. Healy. T. Yu, A. da Silva Alves. C.B. Breslin. 2020. “Review of Recent Developments in the Formulation of Graphene-Based Coatings for the Corrosion Protection of Metals and Alloys.” Corrosion and Materials Degradation 1(3): 296–327. DOI: 10.3390/cmd1030015.
  • [80] Z. Chen, Y. Cai, Y. Lu, Q. Cao, P. Lv, Y. Zhang, W. Liu. 2022. “Preparation and Performance Study of Carboxy-Functionalized Graphene Oxide Composite Polyaniline Modified Water-Based Epoxy Zinc-Rich Coatings.” Coatings 12(6): 824. DOI: 10.3390/coatings12060824.
  • [81] F. Heine, P. Bouuaert, N. Wauters, J. Elmore, B. Erdem, D. Crawford. 2012. “Waterborne Epoxy Zinc-Rich Primers: There Are Viable Options.” Paint and Coatings Industry. https://www.pcimag.com/articles/96850-waterborne-epoxyzinc-rich-primers--there-are-viable-options- (dostęp: 4.09.2012).
  • [82] http://www.qr-polymers.com/portfolio/waterborne-zinc-rich-primers/ (dostęp: 7.05.2021).
  • [83] H. Xu, F. Tavares, A. Natesh, J. Li. “Novel CNSL-Based Waterborne Zn-Rich Primer Systems for Protective Coatings.”American Coatings Association. https://www.paint.org/coatingstech-magazine/articles/novel-cnsl-based-waterborne-znrich-primer-systems-for-protective-coatings/ (dostęp: 15.09.2022).
  • [84] A. Królikowska, L. Komorowski, M. Urbański, M. Zubielewicz, E. Langer, K. Krawczyk, L. Aktas, M. Wanner, I. Gajecka. 2022. „Trudności i sukcesy w recepturowaniu wodnych gruntów cynkowych”. Ochrona przed Korozją 65(10): 316–320. DOI: 10.15199/40.2022.10.2.
  • [85] M. Zubielewicz, E. Langer, A. Królikowska, L. Komorowski, S. Piłat. 2022. „Wodne grunty antykorozyjne pigmentowane cynkiem. Wpływ rodzaju pigmentów cynkowych na właściwości powłok”. Przemysł Chemiczny 101(12): 1087–1093. DOI: 10.15199/62.2022.12.3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0292943a-4396-400e-b845-716f17baa56c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.