Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For quality grey cast iron production, the challenging issues are to avoid cementite structure and obtain the desired graphite morphology with proper matrix as well as hardness. The objective of the present research is to find out the right combination of preconditioner and inoculant that may help to overcome the challenges. In this work, sulphur content is kept low (0.01%). Two preconditioners namely metallurgical SiC and zirconium bearing FeSi with two types of inoculant are individually used to make four combinations of sample and for each case metal is poured into the green sand mould. Finally Brinell hardness and graphite morphology is observed in the thickest and thinnest portions of the castings. Metallurgical SiC with barium bearing inoculant gives better graphite morphology and hardness than strontium bearing inoculant, on the other hand zirconium bearing FeSi gives more satisfying result than SiC with every type of inoculant. Among all of the combinations Zr bearing preconditioner with Ba bearing inoculant gives good graphite morphology with best mechanical properties in both thickest and thinnest portions of the casting.
Czasopismo
Rocznik
Tom
Strony
61--66
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Bangladesh University of Engineering and Technology Shahbagh, Dhaka – 1000, Bangladesh
- Bangladesh University of Engineering and Technology Shahbagh, Dhaka – 1000, Bangladesh
Bibliografia
- [1] Callister, W.D. Jr. (2007). Applications and processing of metal alloys. Materials Science and Engineering, An introduction. John Wiley & Sons, Inc. 367-370.
- [2] Davis, J.R. (1996). Classification and Basic Metallurgy of Cast Irons. ASM Specialty Handbook Cast Irons. ASM International. 6-9.
- [3] Behnam, M.J., Davami, P. & Varahram, N. (2010). Effect of cooling rate on microstructure and mechanical properties of gray cast iron. Materials Science and Engineering: A. 528(2), 583-588. DOI: 10.1016/j.msea.2010.09.087.
- [4] Fras, E., & Górny, M. (2012). An inoculation phenomenon in cast iron. Archives of Metallurgy and Materials. 57(3), 767-777. DOI: https://doi.org/10.2478/v10172-012-0084-6.
- [5] Riposan, I., Chisamera, M., Stan, S. & White, D. (2009). Complex (Mn, X) S compounds-major sites for graphite nucleation in grey cast iron. China Foundry. 6(4), 352-358.
- [6] Sukomal Ghosh (1995), Micro-Structural Characteristics of Cast Irons. Retrieved July 10, 2019, from http://eprints.nmlindia.org/4334/1/E1-18.PDF.
- [7] Muhmond, H.M. & Fredriksson, H. (2013). Relationship between inoculants and the morphologies of MnS and graphite in gray cast iron. Metallurgical and Materials Transactions B. 44(2), 283-298. DOI: https://doi.org/ 10.1007/s11663-012-9768-6.
- [8] Riposan, I., Chisamera, M., Stan, S., Ecob, C. & Wilkinson, D. (2009). Role of Al, Ti, and Zr in gray iron preconditioning/inoculation. Journal of Materials Engineering and Performance, 18(1), 83-87. DOI: doi.org/10.1007/s11665-008-9260-2.
- [9] Onsoien, M.I. & Skaland, T. (2001). Preconditioning of gray iron melts using ferrosilicon or silicon carbide. Transactions of the American Foundry Society. 109, 1-12.
- [10] Kopyciński, D. & Guzik, E. (2008). Effective inoculation of low-sulphur cast iron. Archives of Foundry Engineering. 8(4), 77-80.
- [11] Górny, M., Kawalec, M., Witek, G. & Rejek, A.( 2019). The Influence of Wall Thickness and Mould Temperature on Structure and Properties of Thin Wall Ductile Iron Castings. Archives of Foundry Engineering. 19, 55-59.
- [12] Stojczew, A., Janerka, K., Jezierski, J., Szajnar, J. & Pawlyta, M. (2014). Melting of grey cast iron based on steel scrap using silicon carbide. Archives of Foundry Engineering. 14(3), 77-82. DOI: https://doi.org/10.2478/afe-2014-0066.
- [13] Martin, D.R., Moreno, J.R.S. & de Albuquerque Vicente, A. (2015). Effects of different inoculants on the microstructural characteristics of gray cast iron gg-25, hardness and useful life of tools. Acta Scientiarum. Technology. 37(4), 355-360. DOI: https://doi.org/10.4025/actascitechnol.v37i4.27460.
- [14] Xue, W. & Li, Y. (2016). Pretreatments of gray cast iron with different inoculants. Journal of Alloys and Compounds. 689, 408-415. DOI: https://doi.org/10.1016/j.jallcom. 2016.07.052
- [15] Callister, W.D. Jr. (2007). Mechanical Properties of Metals. Materials Science and Engineering. An introduction. (pp 159-160). John Wiley & Sons, Inc.
- [16] Schubert, W.D., Ta, A.T., Kahr, G., Benecke, T. & Lux, B. (1984). Influence of SiC additions on the microstructure of gray cast iron. MRS Online Proceedings Library Archive. 34. DOI: https://doi.org/10.1557/PROC-34-119.
- [17] Riposan, I., Chisamera, M., Stan, S., Ecob, C. & Wilkinson, D. (2009). Role of Al, Ti, and Zr in gray iron preconditioning/inoculation. Journal of Materials Engineering and Performance. 18(1), 83-87. DOI: https://doi.org/10.1007/s11665-008-9260-2.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02917782-de34-44d3-8f28-796015840349