PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of NaNiCl battery for mitigation of SOFC stack cycling in base-load telecommunication power system - a preliminary evaluation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fuel cells are among the most promising technologies for clean power generation. Solid oxide fuel cells (SOFC) are characterized by high efficiency, fuel flexibility and a wide range of operating conditions. SOFC are the preferred fuel cell technology for micro-combined heat and power (micro-CHP) units, but they are prone to rapid performance degradation when exposed to thermal and electrical cycling. To overcome this issue, alternative methods are sought to assure high durability and long-lasting operation by mitigating the cycling. This can be achieved by limiting the number of cycles and maintaining stable operating conditions. One of the proposed solutions is to create a hybrid system combining an SOFC stack with a molten salt (NaNiCl) battery module. The NaNiCl battery is well known for its high energy density, high durability and zero electrochemical self-discharge. This hybrid system is a solution in which the fuel cell stack and the battery module are thermally and electrically integrated and operate as a part of a cogenerator. Since both modules operate at elevated temperature, heat generated in the stack can be partially used to maintain a sufficient operating temperature of the battery pack. The SOFC/battery hybrid enables high operational flexibility which is achieved by proper selection of the power ratios between the two components. In this configuration the battery pack can be used to stabilize operation of the fuel cell stack and to allow for load-following operation of the hybrid. To evaluate the operation of a SOFC/battery, the dynamic models of the battery and fuel cell stack were developed in Aspen Hysys 8.5. The simulator enables predictive modeling of various operating conditions corresponding to the different power demand profiles. In the transitional states of the telecommunication system, the hybrid unit can either charge or discharge the battery without cycling the fuel cell stack. Simulations are needed to evaluate the performance of the SOFC/battery hybrid system, in particular to analyze the capability to follow the load profile during operation in island mode.
Rocznik
Strony
63–--71
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Thermal Processes Department, Institute of Power Engineering, Augustowka 36, 02-981 Warsaw, Poland
  • Thermal Processes Department, Institute of Power Engineering, Augustowka 36, 02-981 Warsaw, Poland
autor
  • CNR-Istituto di Tecnologie Avanzate per l’Energia ‘Nicola Giordano’ (ITAE), Salita Santa Lucia sopra Contesse 5, 98126 Messina, Italy
autor
  • CNR-Istituto di Tecnologie Avanzate per l’Energia ‘Nicola Giordano’ (ITAE), Salita Santa Lucia sopra Contesse 5, 98126 Messina, Italy
autor
  • FIAMM S.p.A., V.le Europa 75, 36075 Montecchio Maggiore, Italy
Bibliografia
  • [1] M. Ferraro, International innovation, Vol. 173, 2015, pp. 64–66.
  • [2] J. Kupecki, Off-design analysis of a micro-chp unit with solid oxide fuel cells fed by dme, International Journal of Hydrogen Energy 40 (2015) 12009–12022.
  • [3] A. Baghernejad, M. Yaghoubi, K. Jafarpur, Optimum power performance of a new integrated sofc-trigeneration system by multi-objective exergoeconomic optimization, International Journal of Electrical Power & Energy Systems 73 (2015) 899–912.
  • [4] J. Milewski, J. Lewandowski, A. Miller, Reducing co2 emissions from a gas turbine power plant by using a molten carbonate fuel [ograniczenie emisji co2 z elektrowni dzieki zastosowaniu weglanowego ogniwa paliwowego], Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa 29 (4) (2008) 939–954.
  • [5] J. Milewski, M.Wołowicz, A. Miller, R. Bernat, A reduced order model of molten carbonate fuel cell: A proposal, International Journal of Hydrogen Energy 38 (26) (2013) 11565–11575.
  • [6] J. Kupecki, Modelling of physical, chemical and material properties of solid oxide fuel cells, Journal of Chemistry 1 (2015) 414950.
  • [7] M. Bianchi, A. De Pascale, F. Melino, Performance analysis of an integrated chp system with thermal and electric energy storage for residential application, Applied Energy 112 (2013) 928–938.
  • [8] A. van Zyl, Review of the zebra battery system development, Solid State Ionics 86-88 (2) (1996) 883–889.
  • [9] C.-H. Dustmann, Advances in zebra batteries, Journal of Power Sources 1127 (1-2) (2004) 85–92.
  • [10] C. Capasso, O. Veneri, Experimental analysis of a zebra battery based propulsion system for urban bus under dynamic conditions, Energy Procedia 61 (2014) 1138–1141.
  • [11] G. Li, X. Lu, J. Lim, J. Lemmon, V. Sprenkle, Improved cycling behavior of zebra battery operated at intermediate temperature of 175 °c, Journal of Power Sources 249 (2014) 414–417.
  • [12] D. Brett, P. Aguiar, N. Brandon, B. R.N., R. Galloway, G. Hayes, K. Lillie, C. Mellors, C. Smith, A. Tilley, Concept and system design for a zebra battery–intermediate temperature solid oxide fuel cell hybrid vehicle, Journal of Power Sources 157 (2006) 782–798.
  • [13] D. Brett, P. Aguiar, N. Brandon, System modelling and integration of an intermediate temperature solid oxide fuel cell and zebra battery for automotive applications, Journal of Power Sources 163 (2006) 514–522.
  • [14] Web site of onsite project (August 20th 2015). URL www.onsite-project.eu/index.html
  • [15] J. Lorincz, T. Garma, G. Petrovic, Measurement and modelling of base station power consumption under real traffic loads, Sensors 12 (2012) 4281–4310.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-028b16b8-c19b-4197-901b-1f9cb04ed22b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.