Identyfikatory
Warianty tytułu
Applications of SSVEP signals in Brain-Computer Interfaces - multidimensional approach To Human-Computer Interaction
Języki publikacji
Abstrakty
Celem pracy jest przedstawienie różnorodnych zastosowań sygnałów SSVEP (Steady-State Visually Evoked Potentials) w interfejsach mózg-komputer (BCI). Interfejsy mózg-komputer oparte o SSVEP umożliwiają intuicyjne i wszechstronne sterowanie, otwierając nowe możliwości w takich dziedzinach jak obsługa urządzeń wspomagających, wirtualna i rozszerzona rzeczywistość, sterowanie inteligentnymi domami, gry i rozrywka. Omówione zostaną metody akwizycji i przetwarzania sygnałów EEG, algorytmy klasyfikacji oraz ich zastosowanie w różnych systemach. Wyniki badań wskazują na efektywność technologii SSVEP w dostarczaniu niezawodnych i precyzyjnych interakcji, co czyni ją kluczowym elementem w rozwoju nowoczesnych interfejsów użytkownika oraz systemów wspierających.
This work aims to showcase the diverse applications of SSVEP (Steady-State Visually Evoked Potentials) signals in brain-computer interfaces (BCI). BCIs based on SSVEP allow for intuitive and versatile control, opening new possibilities in areas like assistive device control, virtual and augmented reality, smart home control, gaming, and entertainment. The paper will discuss methods for acquiring and processing EEG signals, classification algorithms, and their application in various systems. Research results demonstrate the effectiveness of SSVEP technology in providing reliable and precise interactions, making it a key element in the development of modern user interfaces and support systems.
Czasopismo
Rocznik
Tom
Strony
12--17
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Uniwersytet Kazimierza Wielkiego, Wydział Informatyki Kopernika 1, 85-074 Bydgoszcz
Bibliografia
- 1. Yadav H., Maini S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. Springer Science+Business Media. 2023,doi: 10.1007/s11042-023-15653-x.2.
- 2. Peksa J., Mamchur D. State-of-the-Art on Brain-Computer Interface Technology. 2023,https://www.mdpi.com/1424-8220/23/13/6001/pdf?version=1687945239. Dostęp 11.11.2024.
- 3. Zhu D., Bieger J., Garcia-Molina G., Aarts R.M. A Surveyof Stimulation Methods Used in SSVEP-Based BCIs. Comput Intell Neurosci. 2010, 1. doi: 10.1155/2010/702357.
- 4. .Zhang Y. Mechanism Research and Application of Brain-computer Interface. 2020 doi: 10.1145/3429889.3430085.
- 5. Zhang Y., Xie S.Q., Wang H., Zhang Z. Data Analytics in Steady-State Visual Evoked Potential-Based Brain–Computer Interface: A Review. IEEE Sens J. 2020, 21(2), 1124. doi: 10.1109/jsen.2020.3017491.
- 6. Liu H.et al. A comparative study of stereo-dependent SSVEP targets and their impact on VR-BCI performance. Front Neurosci. 2024. doi: 10.3389/fnins.2024.1367932.
- 7. Niu L.et al. Effect of 3D paradigm synchronous motion for SSVEP based hybrid BCI VR system. 2023.
- 8. Gu W., Yang B.,Chang R. Machine Learning-based EEG Applications and Markets. Cornell University. 2022. doi: 10.48550/arxiv.2208.05144.
- 9. Coulton P., Wylie C.G., Bamford W. Brain interaction for mobile games. 2011. doi: 10.1145/2181037.2181045.
- 10. Gutiérrez-Martínez J., Mercado-Gutiérrez J.A., Carvajal-Gámez B.E., Rosas‐Trigueros J.L., Contreras-Martinez A.E. Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions. Front Hum Neurosci. 2021, 15. doi:10.3389/fnhum.2021.772837.
- 11. Piszcz A., Rojek I, Mikołajewski D. Impact of Virtual Reality on Brain–Computer Interface Performance in IoT Control—Review of Current State of Knowledge. Multidiscip Digit Publ Inst.2024. doi: 10.3390/app142210541.
- 12. Piszcz A. BCI w VR: imersja sposobem na sprawniejsze wykorzystywanie interfejsu mózg-komputer. Studia i Materiały Informatyki Stosowanej. 2021;13(1):5-10.
- 13. Bonaci T., Herron J.A., Matlack C., Chizeck H.J. Securing the exocortex: A twenty-first century cybernetics challenge. 2014 Jun 01. doi: 10.1109/norbert.2014.6893912.
- 14. Gu X.et al. EEG-Based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications. IEEE/ACM Trans Comput Biol Bioinform. 2021, 18(5), 1645. doi: 10.1109/tcbb.2021.3052811.
- 15. Koudelková Z., Daňková Š., Filip M., Dabrovska M. The Possibility of Using BCI Applications in Physiotherapy. EDP Sci. 2019. doi: 10.1051/matecconf/201929201033.
- 16. Maiseli .et al. Brain Computer Interface: Future, Challenges, and Potential Threats. RELX Group (Netherlands). 2022. doi: 10.2139/ssrn.4073630.
- 17. Luo W., Yin W., Liu Q., Qu Y. A hybrid brain-computer interface using motor imagery and SSVEP Based on convolutional neural network. 2023. doi: 10.1080/27706710.2023.2258938.
- 18. Chen W., Chen S.K., Liu Y., Chen Y.J., Chen C. An Electric Wheelchair Manipulating System Using SSVEP-Based BCI System. Multidiscip Digit Publ Inst. 2022. doi: 10.3390/bios12100772.
- 19. Acampora G., Trinchese P., Vitiello A. A dataset of EEG signals from a single-channel SSVEP-based brain computer interface. Elsevier BV. 2021. doi: 10.1016/j.dib.2021.106826.
- 20. Zhu F, Jiang L, Dong G, Gao X, Wang Y. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces. Multidiscip Digit Publ Inst. 2021. doi: 10.3390/s21041256.
- 21. Wai A.A.P.et al. Towards a Fast Steady-State Visual Evoked Potentials (SSVEP) Brain-Computer Interface (BCI). Cornell University. 2020. doi: 10.48550/arxiv.2002.0117.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0289ece8-9148-4646-8149-f2c7b2159b5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.