PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and Characterization of New Refractory Coatings Based on Talc, Cordierite, Zircon and Mullite Fillers for Lost Foam Casting Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Synteza i charakterystyka nowych powłok ogniotrwałych na bazie talku, kordierytu, cyrkonii i mulitu do odlewania metodą piany traconej
Języki publikacji
EN
Abstrakty
EN
Refractory coatings based on different refractory fillers (talc, cordierite, zircon and mullite) for application in Lost Foam casting process were investigated. Design and optimization of the coatings composition with controlled, rheological properties included, and consequently synthesis were achieved by application of different coating components, namely different suspension agents and fillers and by alteration of the coating production procedure. Morphologic and microstructural analysis of fillers was carried out by means of scanning electronic microscope. X-ray diffraction analysis by means of X-ray diffractometer was applied in determination and monitoring the phase composition changes of the refractory fillers. An analysis of the particle size and shape was carried out by means of the PC software application package OZARIA 2.5. To assess the effects of application of individual refractory coatings, a detailed investigation of structural and mechanical properties of the moldings obtained was performed. Highlight was placed on revealing and analyzing surface and volume defects present on moldings. Radiographic molding tests were carried out by means of the X-ray device SAIFORT type-S200. Attained results are essential for the synthesis of refractory coatings based on high-temperature fillers and their applications in Lost Foam casting process for manufacturing of moldings with in-advance-set properties.
PL
W pracy przedstawiono wyniki badań materiałów wysokotemperaturowych - powłok ogniotrwałych na bazie talku, kordierytu. cyrkonii i mulitu, które są stosowane w procesie odlewania metodą piany traconej. Projektowanie i optymalizację składu powłoki o kontrolowanych właściwościach teologicznych, a następnie syntezę osiągnięto poprzez zastosowanie różnych skład- ników powłok, tj. różnych stabilizatorów zawiesiny i wypełniaczy oraz poprzez zmiany w procesie produkcji powłok. Analizę morfologiczną i mikrostruktura!ną wypełniaczy przeprowadzono za pomocą elektronowego mikroskopu skaningowego. Analizę dyfrakcji promieni rentgenowskich zastosowano do określania i monitorowania zmian składu fazowego wypełniaczy ognio- trwałych. Analizę wielkości i kształtu cząstek przeprowadzono za pomocą pakietu oprogramowania użytkowego PC OZARIA 2.5. Żeby ocenić skutki stosowania poszczególnych powłok ogniotrwałych, przeprowadzono szczegółowe badania właściwości strukturalnych i mechanicznych otrzymanych form. Nacisk został położony na ujawnienie i analizę defektów powierzchni i objętości obecnych w formach. Radiograficzne testy formowania przeprowadzono za pomocą urządzenia SAJFORT typu S200. Uzyskane wyniki są niezbędne do syntezy powłok ogniotrwałych w oparciu o wysokotemperaturowe wypełniacze i ich zastosowań w procesie odlewania metodą piany traconej do produkcji form o z góry ustalonych właściwościach.
Twórcy
autor
  • AMI-Beograd, Beograd, Serbia
  • University of Belgrade, Faculty of Technology and Metallurgy Belgrade, Serbia
autor
  • Institute for Materials Testing, Belgrade, Serbia
autor
  • Institute for Technology of Nuclear and Other Raw Mineral Materials, Belgrade, Serbia
Bibliografia
  • [1] R. Monroe, Expandable Pattern Casting, AFS Inc., Des Plaines, Illinois, USA (1992), p.71.
  • [2] H. Mae, X. Teng, Y. Bai, T. Wierzbicki, Comparison of ductile fracture properties of aluminum castings: Sand mold vs. metal mold, International Journal of Solids and Structures 45, 1430-1444 (2008).
  • [3] G. W. Powell, The fractography of casting alloys. Materials Characterization 33, 275-293 (1994).
  • [4] R. E. Moore, Refractories, Structure and Properties, Encyclopedia of Materials: Science and Technology, Press, Oxford (2001) 8079-8099.
  • [5] Y. Motoyama, H. Takahashi, Y. Inoue, K. Shinji, M. Yoshida, Development ofadevice for dynamical measurement of the load on casting and the contraction of the casting inasand mold during cooling, Journal of Materials Processing Technology 212, 1399-1405 (2012).
  • [6] M. Daniel, K. Jarrett New, J. Dantzig, Asand surface element for efficient modeling of residual stress in castings, Applied Mathematical Modeling 25, 825-842 (2001).
  • [7] D. G. Eskin, L. Katgerman, Contraction behavior of aluminum alloys during solidification. International Foundry Research 59, 8-13 (2007).
  • [8] Z. Janjusevic, Z. Gulisija, S. Radosavljevic, Z. Acimovic, Acontribution to study of processes on the steel cast-sand mould contact surface during casting, Materials Letters 45, 235-240 (2000).
  • [9] L. Y. Pio, S. Sulaiman, A. M. Hamouda, M. Mohamad, H. M. Ahmad, Grain refinement of LM6 Al-Si alloy sand castings to enhance mechanical properties, Journal of Materials Processing Technology 162-163, 435-441 (2005).
  • [10] D. Apelian, G. K. Sigworth, K. R. Whaler, Assessment of Grain Refinement and Modification of Al-Si Foundry Alloys by Thermal Analysis, American Foundrymen’s Society Inc., 99297-99307 (1984).
  • [11] U. C. Nwaogu, T. Poulsen, R. K. Stage, C. Bischoff, N. S. Tiedje, New sol-gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality, Surface & Coatings Technology 205, 4035-4044 (2011).
  • [12] J. R. Brown, The Foseco Foundryman’s Handbook, Pergamon Press, Oxford, (2000).
  • [13] F. L. Pirkle, D. A. Podmeyer, Zircon: Origin and Uses, Society for Mining, Metallurgy and Exploration, USA 292, 62 (1988).
  • [14] B. Schillinger, E. Calzada, C. Eulenkamp, G. Jordan, W. W. Schmahl, Dehydration of moulding sand in simulated casting process examined with neutron radiography, Nuclear Instruments and Methods in Physics Research A 651, 312-314 (2011).
  • [15] L. Ji-lin, C. Rong-shi, K. Wei, Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy cast by metal mould and lost foam casting, Transactions of Nonferous Metals Society of China 21, 761-766 (2011).
  • [16] A. Astruc, E. Joliff, J. F. Chailan, E. Aragon, C. O. Petter, C. H. Sampai o, Incorporation of kaolin fillers into an epoxy/polyamidoamine matrix for coatings Progress in Organic Coatings 65 (1), 158-168 (2009).
  • [17] M. Karimian, A. Ourdjini, M. H. Idris, T. Chuan, H. Jafari, Process Control of Lost Foam Casting using Slurry Viscosity and Dipping Time, Journal of Applied Sciences 11, 3655-3658 (2011).
  • [18] W. D. Griffiths, P. J. Davies, The permeability of Lost Foam pattern coatings for Al alloy castings, Journal of Material Science 43 (16), 5441-5447 (2008).
  • [19] A. Charchi, M. Rezaei, S. Hossainpour, J. Shayegh, S. Falak, Numerical simulation of heat transfer and fluid flow of molten metal in MMA-St copolymer lost foam casting process, Journal of Materials Processing Technology 210, 2071-2080 (2010).
  • [20] M. Khodai, N. Parvin, Pressure measurement and some observation in lost foam casting, Journal of Materials Processing Technology 206, 1-6 (2008).
  • [21] F. W. Pursall, Coatings for Moulds and Cores, K. Straus, Ed., Applied Science in the Casting of Metals, Pergamon Press, Oxford, (1970).
  • [22] Lj. Trumbulović, Z. Aćimović-Pavlović, Z. Gulisija, Lj. Andrić, Correlation of technological parameters and quality of castings obtained by the EPCmethod, Materials Letters 56, 1726-1731 (2004).
  • [23] Z. Aćimović, Lj. Pavlović, Lj. Trumbulović, Lj. Andrić, M. Stamatović, Synthesis and characterization of the cordierite ceramics from nonstandard raw materials for application in foundry, Materials Letters 57, 2651-2656 (2003).
  • [24] T. Hübert, S. Svoboda, B. Oertel, Wear Resistant Alumina Coatings Produced byasol-gel Process, Surface and Coatings Technology 201 (1-2), 487-491 (2006).
  • [25] M. Swartzlander, Refractory Coatings: Making the Right Choice, Modern Casting 82 (10), 25 (1992).
  • [26] D. Gan, S. Lu, C. Song, Z. Wang, Physical Properties of Poly(ether ketone ketone)/Mica Composites: Effect of Filler Content, Materials Letters 48 (5), 299-302 (2001).
  • [27] P. L. Jain, Principle of Foundry Technology, 4th Edition, Mc Graw-Hill, New Delhi, (2006).
  • [28] D. A. Caulk, Afoam melting model for lost foam casting of aluminum, International Journal of Heat and Mass Transfer 49, 2124-2136 (2006).
  • [29] M. Yekeler, U. Ulusoy, C. Hicyilmaz, Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability, Powder Technology 140 (12), 68-78 (2004).
  • [30] U. C. Nwaogu, N. S. Tiedje, Foundry Coating Technology: A Review Materials Science and Applications 2 (8), 1143-1160 (2011).
  • [31] D. Kascheev, N. Yu. Novozhilov, E. V. Tsarevskii, V. A. Perepelitsyn, V. A. Ryabin, N. F. Seliverstov, Refractory Coatings for Foundry Moulds and Cores Journal of Refractories and Ceramics 23, 36-139 (1982).
  • [32] Lj. Andric, A. Terzic, Z. Aćimović-Pavlović, Lj. Pavlović, M. Petrov, Comparative Analysis of Process Parameters of Talc Mechanical Activation in Centrifugal and Attrition Mill, Physicochemical Problems of Mineral Processing 50, 433-452 (2013).
  • [33] Z. Aćimović, A. Terzic, Lj. Andrić, Lj. Pavlović, M. Pavlović, Synthesizinga new type of mullite lining, Materials and Technology 47(6), 777-780 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0284a4a7-562e-4ed8-ad87-660b2e09a93c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.