Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a comparative analysis of the operation of two variants of centrifu-gal pump rotors, a description of the main parameters, and the influence of the blade geometry on the performance characteristics obtained. Rotors have been designed using the arc and point method. Based on the developed 3D CAD models, the rotors were printed using the rapid prototyping method on a 3D printer in FFF (Fused Filament Fabrication) technology, in order to experimentally verify the performance, by placing them on the Armfield FM50 test stand. The analysis part of the CFD includes a fluid flow in Ansys Fluent. The process of creating a flow domain and generating a structural mesh was described, along with the definition of boundary conditions, the definition of physical conditions and the turbulence model. The distribution of pressures and velocities in the meridional sections is shown graphically. The chapter with the experimental analysis contains a description of the measuring stand and the methodology used. The results obtained made it possible to generate the characteristics, making it possible to compare the results received. The results allowed to note the influence of geometry on the behavior of the rotors during operation in the system and to indicate that the arc rotor gets a 7% higher head and 2% higher efficiency than the point method rotor, which gives the basis for its commercial use in industry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
82--95
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
autor
- Poznan University of Technology, Institute of Thermal Energy, Faculty of Environmental Engineering and Energy, Poznan, Poland
autor
- Poznan University of Technology, Institute of Machine Design, Faculty of Mechanical Engineering, Poznan, Poland
Bibliografia
- [1] Anderson, H. (1980). Centrifugal Pumps. Trade and Technical Press
- [2] Barmaki, R., & Ehghaghi, M. (2019). Experimental Investigation of a Centrifugal Pump Hydraulic Performance in Hydraulic Transmission of Solids. Mechanics and Mechanical Engineering, 23(1), 259–270. http//doi.org/10.2478/mme-2019-0035
- [3] Bosioc, A., Moș, D., Draghici, I., Muntean, S., &Anton, L. E. (2019). Experimental analysis of a pump equipped with an axial rotor with variable speed. IOP Conference Series: Earth and Environmental Science, 240, 032021. https://doi.org/10.1088/1755-1315/240/3/032021
- [4] Cengel, Y., & Cimbala, J. (2013). Fluid Mechanics Fundamentals and Applications. McGraw Hill.
- [5] Cheah, K., Lee, T., Winoto, S., & Zhao, Z. (2007). Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions. International Journal of Rotating Machinery, 2007, 083641. http://doi.org/10.1155/2007/83641
- [6] Ciałkowski, M., Brodzik, Ł., Wróblewska, A., Frąckowiak, A., Bartoszewicz, J., Joachmiak, M., & Semkło, Ł. (2015). Mechanika płynów – zbiór zadań z rozwiązaniami. Wydawnictwo Politechniki Poznańskiej.
- [7] Ciocan, G., & Kueny, J.-L. (2006). Experimental Analysis of the Rotor-Stator Interaction in a Pump-Turbine. 23rd IAHR Symposium on Hydraulic Machinery and Systems. Yokohama, Japan.
- [8] Fan, H., & Piao, Y. (2017). Cooling design of an aero-engine fuel centrifugal pump at shut-off. Advances in Mechanical Engineering, 9(6). http://doi.org/10.1177/1687814017709700
- [9] Jędral, W. (2001). Pompy wirowe. Wydawnictwo Naukowe PWN.
- [10] Kaczmarczyk, T., Ihnatowicz, E., Żywica, G., & Kaniecki, M. (2019). Experimental study of the prototype of a Roto-Jet pump for the domestic ORC power plant. Archives of thermodynamics, 40(3), 83–108. http://doi.org/ 10.24425/ather.2019.129995
- [11] Kijewski, J. (1993). Maszynoznawstwo. Wydawnictwo Szkolne i Pedagogiczne
- [12] Li, W., Ji, L., Shi, W., Yang, Y., Awais, M., Wang, Y., & Xu, X. (2020). Correlation research of rotor–stator interaction and shafting vibration in a mixed-flow pump. Journal of Low Frequency Noise, Vibration and Active Control, 39(1), 72–83. http://doi.org/10.1177/1461348419836530
- [13] Mousmoulis, G., Kassanos, I., Aggidis, G., & Anagnostopoulos, I. (2021). Numerical simulation of the performance of a centrifugal pump with a semi-open impeller under normal and cavitating conditions. Applied Mathematical Modelling, 89(2), 1814–1834. https://doi.org/10.1016/j.apm.2020.08.074
- [14] Polish Standard PN-90/M-44000. Przenośniki cieczy.
- [15] Song, H., Zhang, J., & Zhang, F. (2022). Rotor strength and critical speed analysis of a vertical long shaft fire pump connected with different shaft lengths. Scientific reports, 12, 9351. https://doi.org/10.1038/s41598-022-13320-z
- [16] Steinbrecher, Ch., Skoda, R., Schilling, R., Müller, N., Breitenbach, A., & Mendler, N. (2003). Numerical Simulation of a Self-Stabilizing Rotor of a Centrifugal Pump. Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference (pp. 71–78). ASME. http://doi.org/10.1115/FEDSM2003-45468
- [17] Troskolański, A. T. (1973). Pompy wirowe. Wydawnictwo Naukowo-Techniczne.
- [18] Zhu, L., Yuan, S., Yuan, J., Zhou, J., Jin, R., & Wang, H. (2011). Numerical simulation for rotor-stator interaction of centrifugal pump with different tongues. Journal of Agricultural Engineering, 27(10), 50–55. http://doi.org/:10.3969/ j.issn.1002-6819.2011.10.009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0282f02a-ba74-49cc-bde8-005924f06420