Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Influence of ΔPhe residues on Conformation of peptide chain
Języki publikacji
Abstrakty
In the past few years dehydropeptides have been highly investigated, mainly due to their biological activity: for instance, as antimicrobials or catalytic agents in some enzymes [1, 51-53]. In presented studies it was established that dehydrophenylalanine residue (ΔPhe) can be an interesting building block of various peptide chains, in order to control and modify a structure, conformation and function of the target molecule [3, 4, 5-7]. It was also pointed out that the length of a linker between dehydroamino acid residues (if two or more are present in a peptide chain) is a crucial factor in case of conformational dependence [23]. Short, one-residue spacers promote 310-helical structure, while longer ones increase the coexistence of 310-helical and α-helical conformers (Table 7). What is worth to notice, temperature or polarity of solvent can dramatically change the screw sense of obtained 310-helices (Table 11). Additionally, the screw sense can be altered by other variables, like chirality of C and N-terminus or dehydroamino acid isomer type (E or Z) [4-11]. Considering chain conformation, it can be disparate, depending on environment’s solid or liquid state (Table 7). Application of dehydropeptides is widely spread among assorted field of studies. As they can form a few self-assembled structures (e.g. nanotubes, nanovesicles or hydrogels), arise an opportunity of encapsulation of small drug molecules or trapping and releasing bioactive substances [47-49]. Sequences with incorporated dehydroamino acid residues were examined as a potential drug - interaction with negatively charged membrane of bacteria species is possible by virtue of positive polarization of peptide chain [51]. Part of the sequences exert an activity against E. coli, S. aureus, P. falciparum or highly dangerous MRSA, presenting versatile potential correlated with their secondary structure [50-53].
Wydawca
Czasopismo
Rocznik
Tom
Strony
9--32
Opis fizyczny
Bibliogr. 53 poz., schem., tab.
Twórcy
autor
- Wydział Chemiczny, Katedra Chemii Bioorganicznej, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Polska
- Katedra Neurologii, Psychologii, Badań nad Lekami i Zdrowiem Dziecka - Sekcja Nauk Farmaceutycznych i Nutraceutycznych, Uniwersytet Florencki, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Włochy
autor
- Wydział Chemiczny, Katedra Chemii Bioorganicznej, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Polska
- Laboratorium Chemii i Biologii Peptydów i Białek, Wydział Chemii ’’Ugo Schiff”, Uniwersytet Florencki, Via della Lastruccia 13, 50019, Sesto Fiorentino, Włochy
autor
- Wydział Chemiczny, Katedra Chemii Bioorganicznej, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Polska
autor
- Wydział Chemiczny, Katedra Chemii Bioorganicznej, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Polska
Bibliografia
- [1] D.E. Palmer, C. Pattaroni, K. Nunami, R.K. Chadha, M. Goodman, T. Wakamiya, K. Fukase, S. Horimoto, M. Kitazawa, H. Fujita, A. Kubo, T. Shiba, J. Am. Chem. Soc., 1992, 114, 5634.
- [2] H. Allgaier, G. Jung, R.G. Werner, U. Schneider, H. Zamer, Angew. Chem., 1985, 24, 1051.
- [3] K. Tori, K. Tokura, K. Okabe, M. Ebata, H. Otsuka, Tetrahedron Lett., 1976, 3, 185.
- [4] C. Pascard, A. Ducruix, J. Lunel, T. Prange, J. Am. Chem. Soc., 1977, 99, 6418.
- [5] C.J. Pearce, K.L. Rinehart jr., J. Am. Chem. Soc., 1979, 101, 5069.
- [6] O. Pieroni, A. Fissi, R.M. Jain, V.S. Chauhan, Biopolymers, 1996, 38, 141.
- [7] C.M. Venkatachalam, Biopolymers, 1968, 6, 1425.
- [8] O. Pieroni, A. Fisi, S. Merlino, F. Ciardelli, Israel J. Chem., 1976/77, 15, 22.
- [9] V.K. Goel, S. Dey, T.P. Singh, J. Mol. Struct., 2005, 738, 189.
- [10] A. Tuzi, M.R. Ciajolo, G. Guarino, P.A. Temussi, A. Fisi, O. Pieroni, Biopolymers, 1993, 33, 1111.
- [11] R.K. Somvanshi, V.K. Goel, S. Dey, and T.P. Singh, J. Chem. Crystallography, 2005, 35, 761.
- [12] S. Bhatia, P. Kumar, P. Kaur, T.P. Singh, J. Peptide Res., 1999, 54, 249.
- [13] S. Bhatia, S. Dey, P. Kaur, T.P. Singh, J. Peptide Sci., 1996, 2, 357.
- [14] S. Dey, S.N. Mitra, T.P. Singh, Biopolymers, 1996, 39, 849.
- [15] K.R. Rajashankar, S. Ramakumar, M.R. Jain, V.S. Chauhan, Biopolymers, 1998, 42, 373.
- [16] M.R. Ciajolo, A. Tuzi, C.R. Pratesi, A. Fissi, O. Pieroni, Int. J. Peptide Protein Res., 1991, 38, 539.
- [17] R. Jain, M. Singh, V.S. Chauhan, Tetrahedron, 1994, 50, 907.
- [18] V.K. Goel, R.K. Somvanshi, S. Dey, T.P. Singh, J. Peptide Res., 2005, 66, 68.
- [19] J. Makker, S. Dey, S. Mukherjee, R. Vijayaraghavan, P. Kumar, T.P. Singh, J. Mol. Struct., 2003, 654,119.
- [20] O. Pieroni, A. Fissi, C. Pratesi, P.A. Temussi, F. Ciardelli, J. Am. Chem. Soc., 1991, 113, 6338.
- [21] M.R. Ciajolo, A. Tuzi, C.R. Pratesi, A. Fissi, O. Pieroni, Biopolymers, 1990, 30, 991
- [22] K.K. Bhandary, V.S. Chauhan, Biopolymers, 1993, 33, 208.
- [23] A. Tuzi, M.R. Ciajolo, D. Pictone, O. Crescenzi, P.A. Temussi, A. Fissi, O. Pieroni, J. Pept. Sci., 1996, 2, 47.
- [24] P. Mathyr, U.A. Ramagopal, S. Ramakumar, N.R. Jagannathan, V.S. Chauhan, Biopolymers, 2006, 84, 298.
- [25] B. Padmanabhan, T.P. Singh, Biopolymers, 1993, 33, 613.
- [26] V.S. Chauhan, Biopolymers, 1989, 28, 763.
- [27] K.R. Rajashankar, S. Ramakumar, T.K. Mal, R.M. Jain, V.S. Chauhan, Angew. Chem. Int. Ed. Eng., 1996, 35, 765.
- [28] Y. Inai, T. Oshikawa, M. Yamashita, T. Hirabayashi, S. Ashitaka, J. Chem. Soc., Perkin Trans. 2, 2001, 6, 892.
- [29] Y. Inai, Y. Kurokawa, T. Hirabayashi, Biopolymers, 1999, 49, 551.
- [30] Y. Inai, Y. Kurokawa, A. Ida, T. Hirabayashi, Bull. Chem. Soc. Jpn., 1999, 72, 55.
- [31] Y. Inai, Y. Kurokawa, N. Kojima, J. Chem. Soc., Perkin Trans. 2, 2002, 11, 1850.
- [32] Y. Inai, Y. Kurokawa, T. Hirabayashi, Macromolecules, 1999, 32, 4575.
- [33] M. Lisowski, R. Latajka, B. Picur, T. Lis, I. Bryndal, M. Rospenk, M. Makowski, P. Kafarski, Biopolymers, 2007, 89, 220.
- [34] M. Lisowski, Ł. Jaremko, M. Jaremko, A. Mazur, R. Latajka, M. Makowski, Biopolymers, 2010, 93, 1055.
- [35] R. Latajka, M. Jewgiński, M. Makowski, M. Pawełczak, T. Huber, N. Sewald, P. Kafarski, J. Pept. Sci., 2008, 14, 1084.
- [36] R. Latajka, M. Jewgiński, M. Makowski, A. Krężel, J. Mol. Struct., 2008, 892, 446.
- [37] R. Latajka, M. Jewgiński, M. Makowski, A. Krężel, S. Paluch, Biopolymers, 2008, 89, 691.
- [38] M.G. Dutta, P. Mathurb, V.S. Chauhana, J. Pept. Sci. 2011, 17, 783.
- [39] N. Ousaka, Y. Inai, R. Kuroda, J. Am. Chem. Soc., 2008, 130, 12266.
- [40] M. Makowski, M. Lisowski, A. Maciąg, M. Wiktor, A. Szlachcic, T. Lis, Acta Cryst., 2010, C66, 0119.
- [41] Y. Demizu, N. Yamagata, Y. Sato, M. Doi, M. Tanaka, H. Okuda, M. Kuriharaa, J. Pept. Sci., 2010, 16, 153.
- [42] R. Acharya, M. Gupta, S. Ramakumar, U.A. Ramagopa, V.S. Chauhan, BMC Structural Biology, 2007, 7.
- [43] Y. Inai, H. Komori, N. Ousaka, Chem. Rec., 2007, 7, 191.
- [44] H. Komori, Y. Inai, J. Org. Chem., 2007, 72, 4012.
- [45] N. Ousaka, Y. Inai, J. Org. Chem., 2009, 74, 1429.
- [46] J.J. Panda, A. Mishra, A. Basu, V.S. Chauhan, Biomacromolecules, 2008, 9, 2244.
- [47] M. Gupta, A. Bagaria, A. Mishra, P. Mathur, A. Basu, S. Ramakumar, V.S Chauhan, Adv. Mater., 2007, 19, 858.
- [48] A. Mishra, J.J. Panda, A. Basu, V.S Chauhan, Langmuir, 2008, 24, 4571.
- [49] J.J. Panda, R. Dua, A. Mishra, B. Mittra, V.S. Chauhan, J. Am. Chem. Soc., 2010, 2, 2839.
- [50] S. Pathak, V.S. Chauhan, AAC, 2011, 55, 2178.
- [51] S.P. Sharma, J. Sharma, S.S. Kanwar, V.S. Chauhana, AAC, 2012, 39, 146.
- [52] K.R. Rajashankar, S. Ramakumar, V.S. Chauhan, J. Am. Chem. Soc., 1992, 114, 9225.
- [53] I.K. Maurya, S. Pathak, M. Sharma, H. Sanwal, P. Chaudhary, S. Tupe, M. Deshpande, V.S. Chauhan, R. Prasad, Peptides, 2011, 32, 1732.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-027c1e80-d654-4edb-89cf-a1db69fc4c4f